Hostname: page-component-5db6c4db9b-bhjbq Total loading time: 0 Render date: 2023-03-25T18:51:13.895Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

High Degree of Crystalline Perfection in Spontaneously Grown GaN Nanowires

Published online by Cambridge University Press:  01 February 2011

Kris A. Bertness
Affiliation:, NIST, Optoelectronics Division, Mail Stop 815.04, 325 Broadway, Boulder, CO, 80305, United States, 303-497-5069, 303-497-3387
J. B. Schlager
Affiliation:, NIST, United States
N. A. Sanford
Affiliation:, NIST, United States
A. Roshko
Affiliation:, NIST, United States
T. E. Harvey
Affiliation:, NIST, United States
A. V. Davydov
Affiliation:, NIST, United States
I. Levin
Affiliation:, NIST, United States
M. D. Vaudin
Affiliation:, NIST, United States
J. M. Barker
Affiliation:, NIST, United States
P. T. Blanchard
Affiliation:, NIST, United States
L. H. Robins
Affiliation:, NIST, United States
Get access


We have grown a variety of isolated GaN nanowires using gas-source molecular beam epitaxy (MBE) and characterized their structural and optical properties. The nanowires have demonstrated a number of promising materials characteristics, including low defect density and high luminescent intensity. Well-separated nanowires formed spontaneously on Si(111) substrates after deposition of a thin AlN buffer layer. Metal catalysts were not used. X-ray diffraction indicates that the c and a lattice parameters are within 0.01 % of the lattice parameters of bulk GaN. Transmission electron microscopy (TEM) revealed the nanowires to be free of dislocations and stacking faults, although a GaN matrix layer growing at the base of the wires was found to have a high density of basal plane stacking faults. The room temperature photoluminescence (PL) intensity compared favorably with a free-standing, thick film of high quality GaN. Several features of the low temperature PL spectra also indicated that the nanowires had few structural defects or chemical impurities. Finally, electrical characterization of dispersed nanowires demonstrated that efficient electrical contacts could be made and that the resistivity of the nanowires was comparable to that of bulk material.

Research Article
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Qian, F., Li, Y., Gradec¡ak, S., Wang, D., Barrelet, C. J., and Lieber, C. M., Nano Lett. 4, 1975 (2004).Google Scholar
2. McAlpine, M. C., Friedman, R. S., Jin, S., Lin, K.-H., Wang, B., W. U., , and Lieber, C. M., Nano Lett. 3, 1531 (2003).CrossRefGoogle Scholar
3. Seryogin, G., Shalish, I., Moberlychan, W., and Narayanamurti, V., Nanotechnology 16, 29412953 (2005).CrossRefGoogle Scholar
4. Kim, H. M., Kim, D. S., Park, Y. S., Kim, D. Y., Kang, T. W., and Chung, K. S., Adv. Materials 14, 991 (2002).3.0.CO;2-L>CrossRef3.0.CO;2-L>Google Scholar
5. Ristic, J., Calleja, E., Sanchez-Garcia, M. A., Ulloa, J. M., Sanchez-Paramo, J., Calleja, J. M., Jahn, U., Trampert, A., and Ploog, K. H., Phys. Rev. B 68, 125305 (2004).CrossRefGoogle Scholar
6. Ristic, J., Sanchez-Garcia, M. A., Ulloa, J. M., Calleja, E., Sanchez-Paramo, J., Calleja, J. M., Jahn, U., Trampert, A., and Ploog, K. H., Phys. Status Solidi B 234, 717 (2002).3.0.CO;2-8>CrossRef3.0.CO;2-8>Google Scholar
7. Kikuchi, A., Kawai, M., Tada, M., and Kishino, K., Jpn. J. Appl. Phys. Part 2 43, L1524 (2004).CrossRefGoogle Scholar
8. Bertness, K. A., Sanford, N. A., Barker, J. M., Schlager, J. B., Roshko, A., Davydov, A. V., and Levin, I., J. Electron. Mat. (2006) (in press).Google Scholar
9. Johnson, J. C., Choi, H.-J., Knutsen, K. P., Schaller, R. D., Yang, P., and Saykally, R. J., Nature Materials 1, 106 (2002).CrossRefGoogle Scholar
10. Zhong, Z., Qian, F., Wang, D., and Lieber, C. M., Nano Lett. 3, 343 (2003).Google Scholar
11. Kim, H.-M., Cho, Y.-H., Lee, H., Kim, S. I., Ryu, S. R., Kim, D. Y., Kang, T. W., and Chung, K. S., Nano Lett. 4, 1059 (2004).CrossRefGoogle Scholar
12. Liu, R., Ponce, F. A., Dadgar, A., and Krost, A., Appl. Phys. Lett. 83, 860 (2003).CrossRefGoogle Scholar
13. Bertness, K. A., Roshko, A., Sanford, N. A., Barker, J. M., and Davydov, A. V., J. Cryst. Growth (2005) (in press).Google Scholar
14. Porowski, S., J. Cryst. Growth 190, 153 (1998).CrossRefGoogle Scholar
15. Romano, L. T., Van de Walle, C. G., Ager, J. W. III, Götz, W., and Kern, R. S., J. Appl. Phys. 87, 7745 (2000).CrossRefGoogle Scholar
16. Levin, I., Davydov, A., Nikoobakht, B., Sanford, N. A., and Mogilevsky, P., Appl. Phys. Lett. 87, 103110 (2005).CrossRefGoogle Scholar
17. Trampert, A., Ristic, J., Jahn, U., Calleja, E., and Ploog, K. H., in Microscopy Of Semiconducting Materials 2003; Vol. 180 (IOP Publishing Ltd, Bristol, 2003), p. 167.Google Scholar
18. Reshchikov, M. A. and Morkoç, H., J. Appl. Phys. 97, 061301 (2005).CrossRefGoogle Scholar
19. Stern, E., Cheng, G. G, Cimpoiasu, E., Klie, R., Guthrie, S., Klemic, J., Kretzschmar, I., Steinlauf, E., Turner-Evans, D., Broomfield, E., Hyland, J., Koudelka, R., Boone, T., Young, M., Sanders, A., Munden, R., Lee, T., Routenberg, D., and Reed, M. A., Nanotechnology 16, 29412953 (2005).CrossRefGoogle Scholar
20. Han, S., Jin, W., Zhang, D., Tang, T., Li, C., Liu, X., Liu, Z., Lei, B., and Zhou, C., Chemical Physics Letters 389, 176 (2004).CrossRefGoogle Scholar
21. Torvik, J. T., in III-V Nitride Semiconductors: Electrical, Structural and Defects Properties, edited by Manasreh, M. O. (Elsevier Science B. V., Amsterdam, 2000), p. 17.CrossRefGoogle Scholar