Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-pl66f Total loading time: 0.206 Render date: 2021-09-23T04:10:16.761Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

High Crystalline Quality Perovskite Thin Films Prepared by a Novel Hybrid Evaporation/CVD Technique

Published online by Cambridge University Press:  29 May 2015

Yanke Peng
Affiliation:
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
Gaoshan Jing
Affiliation:
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
Tianhong Cui
Affiliation:
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
Get access

Abstract

Performance of a perovskite based solar cell is highly determined by the crystalline qualities of the perovskite thin film sandwiched between an electron and a hole transport layer, such as grain size and uniformity of the film. Here, we demonstrated a new hybrid physical-chemical vapor deposition (HPCVD) technique to synthesis high quality perovskite films. First, a PbI2 precursor film was spin-coated on a mesoporous TiO2 (m-TiO2)/compact TiO2 (c-TiO2)/FTO substrate in ambient environment. Then, purified CH3NH3I crystal material was evaporated and the vapor reacted with the PbI2 precursor film in a vacuum pressure/temperature accurately controlled quartz tube furnace. In this technique, high vacuum (2mTorr) and low temperature (100°C) were applied to decrease perovskite film growth rate and reduce perovskite film defects. After vapor reaction, the perovskite film was annealed at 100°C for 10min in 20mTorr vacuum to recrystallize and remove CH3NH3I residue in order to further improve crystal quality of the thin film. Crystal quality of this perovskite thin film was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). SEM and AFM results illustrate perovskite thin films synthesized by this technique have larger grain sizes and more uniformity (RMS 11.6nm/Ra 9.3nm) superior to most existing methods. Strong peaks shown in the XRD chart at 14.18°, 28.52°, 31.96°, which were assigned to (110), (220), (330) miller indices of CH3NH3PbI3 perovskite crystal, indicate the complete reaction between CH3NH3I vapor and PbI2 precursor layer. High power conversion efficiency (PCE) up to 12.3% and stable efficiencies under four hours illumination of AM1.5 standard were achieved by these solar cells. This vacuum/vapor based technique is compatible with conventional semiconductor fabrication techniques and high quality perovskite film could be achieved through delicate process control. Eventually, perovskite based solar cells could be mass produced in low cost for large scale applications by this novel technique.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society 2009, 131, (17), 60506051.CrossRef
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499, (7458), 316–9.CrossRef
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nature materials 2014, 13, (9), 897903.CrossRef
Huang, F.; Dkhissi, Y.; Huang, W.; Xiao, M.; Benesperi, I.; Rubanov, S.; Zhu, Y.; Lin, X.; Jiang, L.; Zhou, Y.; Gray-Weale, A.; Etheridge, J.; McNeill, C. R.; Caruso, R. A.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Nano Energy 2014, 10, 1018.CrossRef
Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, (6196), 542–6.CrossRef
Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, (7467), 395–8.CrossRef
Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. J Am Chem Soc 2014, 136, (2), 622–5.CrossRef
Luo, P.; Liu, Z.; Xia, W.; Yuan, C.; Cheng, J.; Lu, Y. ACS applied materials & interfaces 2015, 7, (4), 2708–14.CrossRef
Ha, S. T.; Liu, X. F.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q. H. Advanced Optical Materials 2014, 2, (9), 838844.CrossRef
Leyden, M. R.; Ono, L. K.; Raga, S. R.; Kato, Y.; Wang, S.; Qi, Y. J. Mater. Chem. A 2014.
Chen, Q.; Zhou, H.; Song, T. B.; Luo, S.; Hong, Z.; Duan, H. S.; Dou, L.; Liu, Y.; Yang, Y. Nano letters 2014, 14, (7), 4158–63.CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Crystalline Quality Perovskite Thin Films Prepared by a Novel Hybrid Evaporation/CVD Technique
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Crystalline Quality Perovskite Thin Films Prepared by a Novel Hybrid Evaporation/CVD Technique
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Crystalline Quality Perovskite Thin Films Prepared by a Novel Hybrid Evaporation/CVD Technique
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *