Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-692xr Total loading time: 0.314 Render date: 2023-01-30T12:37:22.542Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

High Aspect Ratio Microstructures in LiNbO3 Produced by Ion Beam Enhanced Etching

Published online by Cambridge University Press:  26 February 2011

Frank Schrempel
Affiliation:
schrempe@pinet.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, Jena, N/A, N/A, Germany
Thomas Gischkat
Affiliation:
gischkat@pinet.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Germany
Holger Hartung
Affiliation:
hartung@iap.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Angewande Physik, Germany
Ernst Bernhard Kley
Affiliation:
kley@iap.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Angewande Physik, Germany
Werner Wesch
Affiliation:
Werner.Wesch@uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Germany
Andreas Tünnermann
Affiliation:
tuennermann@iap.uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Angewande Physik, Germany
Get access

Abstract

This work presents data on damage evolution, volume expansion and etching behavior of LiNbO3 irradiated with Ar+-ions as a function of irradiation and etching conditions. Single crystals of x- and z-cut LiNbO3 were irradiated at room temperature and 15 K using Ar-ions with energies between 60 and 600 keV and ion fluences between 5 × 1012 and 1 × 1015 cm-2. The damage formation investigated with RBS channeling analysis depends on the crystal cut as well as on the irradiation temperature. Irradiation of z-cut material at 300 K causes complete amorphization at 0.4 dpa (displacements per target atom). In contrast 0.27 dpa are sufficient to amorphize the x-cut LiNbO3. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization to 0.18 dpa. To study the etching behavior ∼500 nm thick amorphous layers were generated via multiple irradiations with Ar+-ions. Etching was performed in HF-solution of different concentration and at different temperatures. The influence of the irradiation and etching conditions on damage formation and etching of LiNbO3 is discussed. In conclusion, negligible etching of the perfect crystal, high etching rates and high contrast of Ion Beam Enhanced Etching (IBEE) allow the realization of high aspect ratio microstructures in LiNbO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Leech, P.W. and Ridgway, M.C., J. Vac. Sci. Technol. A17 (6), 3358 (1999).CrossRefGoogle Scholar
2 Hines, D.S. and Williams, K.E., J. Vac. Sci. Technol. A20 (3), 1072 (2002).CrossRefGoogle Scholar
3 Yin, S.Z., Microw. Opt. Technol. Lett. 22 (6), 396 (1999).3.0.CO;2-K>CrossRefGoogle Scholar
4 Lacour, F., Courjal, N., Bernal, M.B., Sabac, A.. Bainier, C. and Spajer, M., Opt. Mat. 27 (8), 1421 (2005).CrossRefGoogle Scholar
5 Barry, I.E., Ross, G.W., Smith, P.G.R., Eason, R.W. and Cook, G., Mater. Lett. 37, 246 (1998); Appl. Phys. Lett. 74 (10), 1487 (1487).CrossRefGoogle Scholar
6 Mizuuchi, K., Yamamoto, K. and Taniuchi, T., Electron. Lett. 26 (24), 1992 (1992).CrossRefGoogle Scholar
7 Laurell, F., Webjorn, J., Arvidsson, G. and Holmberg, J., Lightwave, J. Technol. 10 (11), 1606 (1992).Google Scholar
8 Lee, H.J. and Shin, S.Y., Electron. Lett. 31 (4), 268 (1995).CrossRefGoogle Scholar
9 Kawabe, M., Kubota, M., Masuda, K. and Namba, S., J. Vac. Sci. Technol. 15 (3), 1096 (1978).CrossRefGoogle Scholar
10 Götz, G. and Karge, H., Nucl. Instr. and Meth. 209/210, 1079 (1983).CrossRefGoogle Scholar
11 Ashby, C.I.H., Arnold, G.W. and Brannon, P.J., J. Appl. Phys. 65 (1) 93 (1989).CrossRefGoogle Scholar
12 Shao, T.H., Jiang, X.Y., Shang, W. and Feng, X.Q., Mater. Sci. Eng. 10, 19 (1991).Google Scholar
13 Gill, D.M., Jacobson, D., White, C.A., Jones, C.D.W., Shi, Y., Minford, W.J. and Harris, A., J. Lightwave Technol. 22 (3), 887 (2004).CrossRefGoogle Scholar
14 Schrempel, F., Gischkat, Th., Hartung, H., Kley, E.B. and Wesch, W., Nucl. Instr. and Meth. B, accepted (2006).Google Scholar
15 Destefanis, G.L., Townsend, P.D., Gailliard, J.P., Appl. Phys. Lett. 32 (1978) 293.CrossRefGoogle Scholar
16 Wei, S., Jiang, X.-Y., Feng, X.-Q., Vacuum 39 (2-4) 287.CrossRefGoogle Scholar
17 Townsend, P.D., Nucl. Instr. and Meth. B 46 (1990) 18.CrossRefGoogle Scholar
18 Shi, B.-R., Wang, K.-M., Wang, Z.-L., Liu, X.-D., Xu, T.-B., Zhu, P.-R., J. Appl. Phys. 74 (3) (1993) 1625.CrossRefGoogle Scholar
19 Kling, A., Silva, M.F. da, Soares, J.C., Fichtner, P.F.P., Amaral, L., Zawislak, F., Nucl. Instr. and Meth. B 175–177 (2001) 394.CrossRefGoogle Scholar
20 Meldrum, A., Boatner, L.A., Weber, W.J., Ewing, R.C., J. Nucl. Mat 300 (2002) 242.CrossRefGoogle Scholar
21 Bentini, G.G., Bianconi, M., Correra, L., Chiarini, M., Mazzoldi, P., Sada, C., Argiolas, N., Bazzan, M., Guzzi, R., J. Appl. Phys. 96 (1) (2004) 242.CrossRefGoogle Scholar
22 Breeger, B., Wendler, E., Trippensee, W., Schubert, Ch., Wesch, W., Nucl. Instr. and Meth. B 174 (2001) 199.CrossRefGoogle Scholar
23 Gärtner, K., Nucl. Instr. and Meth. B 227 (2005) 522.CrossRefGoogle Scholar
24 Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids, Perga-mon, New York, 2003.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Aspect Ratio Microstructures in LiNbO3 Produced by Ion Beam Enhanced Etching
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High Aspect Ratio Microstructures in LiNbO3 Produced by Ion Beam Enhanced Etching
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High Aspect Ratio Microstructures in LiNbO3 Produced by Ion Beam Enhanced Etching
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *