No CrossRef data available.
Published online by Cambridge University Press: 15 June 2012
We have developed the tactile sensor using the microcantilevers with strain gauge film which can detect normal and shear forces simultaneously. In this work, the tactile sensor and the IC amplifier have been integrated heterogeneously to shorten the wire length by chip-on-chip stacking and reduce the noise in the output voltage. Standard deviation of the noise can be reduced from 27.6 mV to 3.3 mV by heterogeneous integration of the tactile sensor and the IC amplifier using Au wire bonding. By this heterogeneous integration, the device size and wiring numbers can be reduced, and installation of more sensors is allowed on fingertips of the robot. Moreover, through-silicon-via (TSV) holes were fabricated to mount an IC amplifier on the backside of the sensor chip, instead of using Au wires. Although TSV can be fabricated successfully, resistance to sacrificial etching process is problem. As a result, Si3N4 used instead of SiO2 has improved insulation between TSVs.