Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-7frv5 Total loading time: 0.156 Render date: 2021-06-24T04:38:05.979Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Heteroepitaxy of Strained and Not-Strained Ferroelectric Superlattices and their Electric Properties.

Published online by Cambridge University Press:  15 February 2011

Hitoshi Tabata
Affiliation:
Institute for Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan.
Masakazu Hamada
Affiliation:
Institute for Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan.
Tomoji Kawai
Affiliation:
Institute for Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan.
Get access

Abstract

Bismuth based artificial superlattices have been formed by a layer-by-layer laser deposition with in-situ monitoring of RHEED. The Bi2O2/WO6, Bi2O2/SrTa2O9, Bi2O2/SrTa2O9 /SrTiO3 and Bi2O2/SrTa2O9/BaTiO3 are constructed epitaxially by a single, double and triple perovskite layers sandwiched by Bi2O2 layers, respectively. The dielectric constant increases with increasing the number of perovskite layers. And the D-E hysteresis loop (ferroelectric properties) appears along the c-axis direction in odd perovskite layers (n=l and 3). We have also formed the SrTiO3/BiWO6/SrTiO3 multi layers. With this combination, the STO layers are isolated by the BWO layers. The dimensionality of STO layer can be controlled by changing the thickness of BWO layers. Below the BWO thickness of 500 Å, the εr increases monotonously with decreasing the BWO thickness. Therefore, the the coulomb force, which is in proportion to inverse of the distance, plays an essential role for the dielectric constant. The formation of “artificially constructed ferroelectric films” by a layer-by-layer deposition method will be discussed ad an essential approach to elucidate the mechanism of ferroelectricity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Aurivillius, B.: Arkiv Kemi 1, 463 (1949).Google Scholar
2. Somolenskii, G. A., Isupov, V. A. and Agranoskaya, A. I.: Sov.Phys.-Solid Statc1, 149(1959).Google Scholar
3. Cummins, S. E. and Cross, L. E.: J. Appl. Phys. 39, 2268 (1968).CrossRefGoogle Scholar
4. Mihara, T.: Proc.Sym. Integrated Ferroclectrics (1992) p. 137.Google Scholar
5. Araujo, C. A., Cuchiaro, J. D., Mcmillan, L. D., Scott, M. C. and Scot, J. F.: Nature 374, 627 (1995).CrossRefGoogle Scholar
6. Vijay, D. P., Desu, S. B., Nagata, M., Zahng, X. and Chen, T. C., Mat.Rcc.Soc.Symp.Proc. 361, 3 (1995).CrossRefGoogle Scholar
7. Joshi, P. C., Mansingh, A., Kamalasanan, M. N. and Chandra, S.: Appl.Phys.Lett. 59, 2389 (1991).CrossRefGoogle Scholar
8. Maffei, N. and Krupanidhi, S. B.: J.Appl.Phys. 74, 7551 (1993).CrossRefGoogle Scholar
9. Nakamura, T., Muhammet, R., Shimizu, M. and Shiosaki, T.:Jpn.J.Appl.Phys. 32, 4086 (1993).CrossRefGoogle Scholar
10. Ramesh, R., Inam, A., Chan, W. K., Wilkens, B., Myers, K., Rcmshing, K., Hart, D. L. and Tarascon, J. M.: Science 252, 944 (1991).CrossRefGoogle Scholar
11. Jona, F. and Shirane, G.: Ferroelectric Crystals (Dover, New York, 1960) p. 274.Google Scholar
12. Tabata, H., Tanaka, T. and Kawai, T.: Appl.Phys.Lett., 65, 1970 (1994).CrossRefGoogle Scholar
13. Tabata, H., Hamada, M. and Kawai, T.: Jpn.J.Appl.Phys. 34, 5146 (1995).CrossRefGoogle Scholar
14. Subbaro, E. C. Phys. Rev. 122, 804 (1961).CrossRefGoogle Scholar
15. Subbaro, E. C. J. Chem. Phys. 34, 695 (1961).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Heteroepitaxy of Strained and Not-Strained Ferroelectric Superlattices and their Electric Properties.
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Heteroepitaxy of Strained and Not-Strained Ferroelectric Superlattices and their Electric Properties.
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Heteroepitaxy of Strained and Not-Strained Ferroelectric Superlattices and their Electric Properties.
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *