Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-12T15:37:26.160Z Has data issue: false hasContentIssue false

Heteroepitaxy of III-V Compounds on Si Substrates for Solar Cells and Led

Published online by Cambridge University Press:  28 February 2011

Masafumi Yamaguchi
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki-ken 319-11, Japan
Susumu Kondo
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki-ken 319-11, Japan
Get access

Abstract

Heteroepitaxial growth of GaAs, InP, GaP and InGaP on Si substrates is studied using MOCVD (Metal-Organic Chemical Vapor Deposition). High qgaliti GaAs films on Si, with a dislocation density of about 106 cm−2, are obtained by combining strained- layer superlattice insertion and thermal cycle annealing. Reduction of dislocation density in the III-V compounds on Si is discussed based on a simple model, where dislocation annihilation is assumed to be caused by dislocation movement under thermal and misfit stress. As a result of dislocation density reduction, high-efficiency GaAs-on-Si solar cells with total-area efficiencies of 18.3% (AMO) and 20% (AM1.5), and red and yellow emissions from InGaP-on-Si light-emitting diodes (LEDs) have been realized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fan, J.C.C., Phillips, J.M. and , B-Y. Tsaur eds., Heteroepitaxy on Si, Mat. Res. Soc. Symp., Vol. 91, (Mat. Res. Soc., 1987).Google Scholar
2. Yamamoto, A. and Yamaguchi, M., Heteroepitaxy on Si, Mat. Res. Soc. Symp., Vol. 116, (Mat. Res. Soc., 1988) p.285.CrossRefGoogle Scholar
3. Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).CrossRefGoogle Scholar
4. Yamaguchi, M., Yamamoto, A., Tachikawa, M., Itoh, Y. and Sugo, M., Appl. Phys. Lett. 53, 2293 (1988).CrossRefGoogle Scholar
5. Al-Jassim, M.M., Nishioka, T., Itoh, Y., Yamamoto, A., and Yamaguchi, M., Heteroepitaxy on Si, Mat. Res. Soc. Symp., Vol. 116, (Mat. Res. Soc., 1988) p..CrossRefGoogle Scholar
6. Choi, S.K., Mihara, M., and Ninomiya, T., Jpn. J. Appl. Phys. 16, 737 (1977).CrossRefGoogle Scholar
7. Yamaguchi, M., Nishioka, T. and Sugo, M., Appl. Phys. Lett. 54, 24 (1989).CrossRefGoogle Scholar
8. Yamaguchi, M. and Amano, C., J. Appl. Phys. 58, 3601 (1985).CrossRefGoogle Scholar
9. Kadota, Y., Yamaguchi, M., and Ohmachi, Y., 4th Int. Conf. on Photovoltaic Science and Engineering, Sydney, No.15.2 (1989).Google Scholar
10. Kondo, S., Matsumoto, S., and Nagai, H., Appl. Phys. Lett. 53, 297 (1988).Google Scholar
11. Yacobi, B.G., Zemon, S., Jagannath, C., and Sheldon, P., Technical Digest of the 5th Int. Conf. on Molecular Beam Epitaxy, Sapporo, (1988) p.502.Google Scholar
12. Onozawa, S., Ueda, T., Akiyama, M., and Sakuta, M., Annual Meeting of Jpn. Soc. Appl. Phys. Toyama, 7p-Y-7 (1988).Google Scholar