Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T16:09:02.123Z Has data issue: false hasContentIssue false

Helium Induced Cavities in Silicon: Their Formation, Microstructure and Gettering Ability

Published online by Cambridge University Press:  15 February 2011

J. R. Kaschny
Affiliation:
Forschungszentrum Rossendorf, FWIM, PF 510119, D-01314 Dresden, Germany
P. F. P. Fichtner
Affiliation:
Departamento de Metalurgia, UFRGS, POB15051, 91501–970 Porto Alegre, Brazil
A. Muecklich
Affiliation:
Forschungszentrum Rossendorf, FWIM, PF 510119, D-01314 Dresden, Germany
U. Kreissig
Affiliation:
Forschungszentrum Rossendorf, FWIM, PF 510119, D-01314 Dresden, Germany
R. A. Yankov
Affiliation:
Forschungszentrum Rossendorf, FWIM, PF 510119, D-01314 Dresden, Germany
R. Koegler
Affiliation:
Forschungszentrum Rossendorf, FWIM, PF 510119, D-01314 Dresden, Germany
A. B. Danilin
Affiliation:
Centre for Analysis of Substances, 1 Elektrodnaya, 111524 Moscow, Russia
W. Skorupa
Affiliation:
Forschungszentrum Rossendorf, FWIM, PF 510119, D-01314 Dresden, Germany
Get access

Abstract

The formation of cavity microstructures in silicon following helium implantation (10 or 40 keV; 1×1015, l×1016 and 5×1016 cm−2) and annealing (800 °C) is investigated by means of Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry and Channeling (RBS/C), and Elastic Recoil Detection (ERD). The processes of cavity nucleation and growth are found to depend critically on the implanted He concentration. For a maximum peak He concentration of about 5×1020 cm−3 the resulting microstructure appears to contain large overpressurized bubbles whose formation cannot be accounted by the conventional gas-release model and bubble-coarsening mechanisms predicting empty cavities. The trapping of Fe and Cu at such cavity regions is studied by Secondary Ion Mass Spectrometry (SIMS).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Griffioen, C.C., Evans, J.H., de Jong, P.C. and van Vaan, A., Nuc. Instr. and Meth. B27, 417 (1987)Google Scholar
2. Skorupa, W., Hatzopoulos, N., Yankov, R.A. and Danilin, A.B., Appl. Phys. Lett. 67, 2992 (1995)Google Scholar
3. Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996)Google Scholar
4. Raineri, V., Fallica, P.G., Percolla, G., Battaglia, A., Barbagallo, M. and Campisano, S.U., J. Appl. Phys. 78, 3727 (1995)Google Scholar
5. Bruel, M., Nuc. Instr. and Meth. B108, 313 (1996)Google Scholar
6. Raineri, V. and Campisano, S.U., Appl. Phys. Lett. 66, 3654 (1995)Google Scholar
7. Kreissig, U., Grötzschel, R. and Behrisch, R., Nucl. Instr. and Meth. B85, 71 (1994)Google Scholar
8. Fichtner, P.F.P., Kaschny, J.R., Yankov, R.A., Mücklich, A., Kreiβig, U. and Skorupa, W., Appl. Phys. Lett. 70, 732 (1997)Google Scholar
9. Evans, J.H., van Veen, A. and Caspers, L.M., Rad. Effects 78, 105 (1983)Google Scholar
10. Petersen, G.A., Myers, S.M. and Follstaedt, D.M., to be published in Proceedings of Ion Beam Modification of Materials (IBMM), Albuquerque NM - USA (1996).Google Scholar
11. Tamura, M., Ando, T. and Ohyu, K., Nucl. Instr. and Meth. B 59, 572 (1991)Google Scholar
12. Kögler, R., Yankov, R.A., Kaschny, J.R., Werner, P., Danilin, A.B. and Skorupa, W., submitted to Appl. Phys. Lett.Google Scholar