Hostname: page-component-594f858ff7-c4bbg Total loading time: 0 Render date: 2023-06-08T05:31:57.667Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Growth of quaternary AlInGaN/GaN Heterostructures by Plasma Induced Molecular Beam Epitaxy with high In Concentration

Published online by Cambridge University Press:  17 March 2011

A. P. Lima
Affiliation:
Walter Schottky Institut, Technische Universitét München, Garching, Germany
C. R. Miskys
Affiliation:
Walter Schottky Institut, Technische Universitét München, Garching, Germany
L. Görgens
Affiliation:
Walter Schottky Institut, Technische Universitét München, Garching, Germany
O. Ambacher
Affiliation:
Walter Schottky Institut, Technische Universitét München, Garching, Germany
A. Wenzel
Affiliation:
Institut für Physik, Universitét Augsburg, Augsburg, Germany
B. Rauschenbach
Affiliation:
Institut für Experimentalphysik II, Universitét Leipzig and Institut für Oberflé chenmodifizierung Leipzig, Leipzig, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institut, Technische Universitét München, Garching, Germany
Get access

Abstract

Growth of AlInGaN/GaN heterostructures on sapphire substrates was achieved by plasma induced molecular beam epitaxy. Different alloy compositions were obtained by varying the growth temperature with constant Al, In, Ga and N fluxes. The In content in the alloy, measured by Rutherford Backscattering Spectroscopy, increased from 0.4% to 14.5% when the substrate temperature was decreased from 775 to 665°C. X-Ray reciprocal space maps of asymmetric AlInGaN (2.05) reflexes were used to measure the lattice constants and to verify the lattice match between the quaternary alloy and the GaN buffer layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ambacher, O., J. Phys., D 31, 2653 (1998).Google Scholar
2. Khan, M. A., Yang, J. W., Simin, G., Gaska, R., Shur, M. S., and Bykhovski, A. D., Appl. Phys. Lett., 75, 2806 (1999).CrossRefGoogle Scholar
3. Shur, M. S., Bykhrovski, A. D., Gaska, R., Khan, M. A., and Yang, J. W., Appl. Phys. Lett., 76, 3298 (2000).CrossRefGoogle Scholar
4. McIntosh, F. G., Boutros, K. S., Roberts, J. C., Bedair, S. M., Piner, E. L., and El-Masry, N. A., Appl. Phys. Lett., 68, 40 (1996).CrossRefGoogle Scholar
5. Aumer, M. E., LeBoeuf, S. F., McIntosh, F. G., and Bedair, S. M., Appl. Phys. Lett., 75, 3315 (1999).CrossRefGoogle Scholar
6. Khan, M. Asif, Yang, J. W., Simin, G., Gaska, R., Shur, M. S., Loye, H. C., Tamulaitis, G., Zukauskas, A., Smith, D. J., Chandrasekhar, D., Bicknell-Tassius, R., Appl. Phys. Lett., 76, 1161 (2000).CrossRefGoogle Scholar
7. Scholz, F., Off, J., Kniest, A., Görgens, L., Ambacher, O., Mat. Sci. Eng., B 59, 268 (1999).CrossRefGoogle Scholar
8. Han, J., Figiel, J., Petersen, G., Myers, S., Crawford, M., Banas, M., Hearne, S., MRS Internet J. Nitride Semicond. Res., 5S1, W6.2 (2000).Google Scholar
9. Doolittle, L.R., Nucl. Inst. Meth., B15, 227 (1986).CrossRefGoogle Scholar
10.to be published in Nucl. Inst. Meth. B.Google Scholar
11. Bergmaier, A., Dollinger, G., Frey, C.M., Nucl. Instr. and Meth., B 99, 488 (1995).CrossRefGoogle Scholar
12. Shur, M. S., and Khan, M.A., MRS Bulletin, 22,(2) 4455 (1997).CrossRefGoogle Scholar