Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T09:34:09.080Z Has data issue: false hasContentIssue false

Growth Behaviour of Engineered Porous Thin Films – Measurement and Modeling

Published online by Cambridge University Press:  17 March 2011

D. Vick
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G7vick@ee.ualberta.ca
T. Smy
Affiliation:
Department of Electronics, Carleton University, Ottawa, ON, Canada K1S 5B6
B. Dick
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G7
S. Kennedy
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G7
M. J. Brett
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G7
Get access

Abstract

Recent experimental work has demonstrated that unique high porosity thin films may be ob- tained in physical deposition systems by combining glancing angle deposition with in situ sub-strate motion control [1-7]. The microstructure of these films consists of isolated columns engineered into shapes such as helices, posts, or chevrons. Due to the isolated nature of the columns, the films present a unique opportunity to study fundamental thin film growth behaviour and, in particular, the influence of the self shadowing mechanism in three dimensions. Apart from this academic motivation, there is the need to characterize the physical constraints imposed on the engineering of these films. In particular, this study will have implications for the realization of isolated, periodically arranged nanostructures envisioned for certain applications. Preliminary results from an ongoing study of growth dynamics, morphology, porosity, and scaling behaviour, and the dependence of these features on deposition parameters are presented below.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T., and Brett, M. J., J. Vac. Sci. Technol. A 13, 1032 (1995).Google Scholar
2. Robbie, K., Brett, M. J., and Lakhtakia, A., Nature 384, 616 (1996).Google Scholar
3. Robbie, K. and Brett, M. J., J. Vac. Sci. Technol. A 15, 1460 (1997).Google Scholar
4. Messier, R., Gehrke, T., Frankel, C., Venugopal, V. C., Otano, W., and Lakhtakia, A., J. Vac. Sci. Technol. A 15, 2148 (1997).Google Scholar
5. Vick, D., Tsui, Y.Y., Brett, M.J., and Fedosejevs, R., Thin Solid Films 350, 49 (1999).Google Scholar
6. Lui, F., Umlor, M. T., Shen, L., Weston, J., Eads, W., Barnard, J. A., and Mankey, G. J., J. Appl. Phys. 85, 5486 (1999).Google Scholar
7. Messier, R., Venugopal, V.C., and Sunal, P.D., J. Vac. Sci. Technol. A 18, 1538 (2000).Google Scholar
8. Robbie, K. and Brett, M.J., U.S. patent no. 5866204.Google Scholar
9. Robbie, K., Sit, J.C., and Brett, M.J., J. Vac. Sci. Technol. B 16, 1115 (1998).Google Scholar
10. Sit, J.C., Broer, D.J., and Brett, M.J., Liquid Crystals 27, 387 (2000).Google Scholar
11. Wu, A., Seto, M., Brett, M.J., Sensors and Materials 11, 493 (1999).Google Scholar
12. Harris, K.D., Brett, M.J., Smy, T.J., and Backhouse, C., Journal of The Electrochemical Society 147 2002 (2000).Google Scholar
13. Yehoda, J.E. and Messier, R., Appl. Surf. Sci. 22/23, 590 (1985).Google Scholar
14. Gomez-Rodriguez, J.M., Baro, A.M., and Salvarezza, R.C., J. Vac. Sci. Technol. B 9, 495 (1991).Google Scholar
15. Herrasti, P., Ocon, P., Vazquez, L., Salvarezza, R.C., Vara, J.M., and Arvia, A.J., Phys. Rev. A 45, 7440 (1992).Google Scholar
16. Salvarezza, R.C., Vazquez, L., Herrasti, P., Ocon, P., Vara, J.M., and Arvia, A.J., Europhys. Lett. 20, 727 (1992).Google Scholar
17. Ballac, D. Le, Niklasson, G.A., Granqvist, C.G., Europhys. Lett. 32, 155 (1995).Google Scholar
18. Salvadori, M.C., Silveira, M.G., and Cattani, M., Thin Solid Films 354, 1 (1999).Google Scholar
19. Villarubia, J.S., J. Res. Natl. Inst. Stand. Technol. 102, 425 (1997).Google Scholar
20. Smy, T., Vick, D., Brett, M.J., Dew, S.K., Wu, A.T., Sit, J.C., and Harris, K.D., J. Vac. Sci. Technol. A 18 2507 (2000).Google Scholar
21. Malac, M. and Egerton, R., Nanotechnology 12, 11 (2001).Google Scholar
22. Malac, M., Egerton, R., Brett, M.J., and Dick, B., J. Vac. Sci. Technol. B 7, 2671 (1999).Google Scholar
23. Dick, B., Brett, M.J., Freeman, M.R., Malac, M., and Egerton, R., J. Vac. Sci. Technol. A 18, 1838 (2000).Google Scholar
24. Dick, B., Sit, J.C., Brett, M.J., Votte, I.M.N., and Bastiaansen, C.W.M., Nanoletters 1,71 (2001).Google Scholar