Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-5kt27 Total loading time: 0.243 Render date: 2021-09-25T22:41:17.984Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Growth and Properties of BiFeO3 Thin Films by Molecular-Beam Epitaxy

Published online by Cambridge University Press:  12 July 2019

Jon F. Ihlefeld
Affiliation:
Pennsylvania State University, University of California, Berkeley
Wei Tian
Affiliation:
Pennsylvania State University
Ramamoorthy Ramesh
Affiliation:
University of California, Berkeley
Darrell G. Schlom
Affiliation:
Pennsylvania State University
Get access

Abstract

Format

This is a copy of the slides presented at the meeting but not formally written up for the volume.

Abstract

Description: Epitaxial thin films of the multiferroic BiFeO3 have been grown by molecular beam epitaxy in an adsorption-controlled growth regime where substrate temperature and bismuth oxide over pressure establish phase and stoichiometry control. 30 nm thick BiFeO3 films have been deposited directly on (001) SrTiO3 and SrRuO3/(110) DyScO3, and on (0001) GaN containing a 1 nm thick TiO2 overlayer to enable the epitaxial transition between (0001) GaN and (0001) BiFeO3. Films grown on (001) SrTiO3 possess rocking curves identical to that of the underlying substrate, e.g., a full width at half maximum (FWHM) in ù of 25 arc sec in the best case. This is over 40 times narrower than the best published result for epitaxial BiFeO3 films deposited by any technique. On all of the above substrates, the BiFeO3 films exhibit rhombohedral symmetry. The in-plane epitaxial alignment observed for BiFeO3/TiO2/(0001) GaN differs by a 30° in-plane rotation from that observed in previous work for BiFeO3/SrTiO3/TiO2/(0001) GaN. Specifically, our (0001) BiFeO3/TiO2/(0001) GaN is oriented in-plane with [10-10]BiFeO3 [11-20]GaN, accompanied by a 180° in-plane rotational twin variant. The results of this work will be discussed in the context of the interfacial and crystallographic orientation dependence on the ferroelectric, antiferromagnetic, and dielectric properties of this multiferroic.

Type
Slide Presentations
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth and Properties of BiFeO3 Thin Films by Molecular-Beam Epitaxy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth and Properties of BiFeO3 Thin Films by Molecular-Beam Epitaxy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth and Properties of BiFeO3 Thin Films by Molecular-Beam Epitaxy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *