Hostname: page-component-546b4f848f-lx7sf Total loading time: 0 Render date: 2023-06-01T17:13:39.648Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Growth and physical properties of vanadium oxide thin films with controllable phases

Published online by Cambridge University Press:  05 April 2013

Yanda Ji
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China
Yin Zhang
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China
Min Gao
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China
Zhen Yuan*
Affiliation:
The Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, P. R. China
Changqing Jin
Affiliation:
The Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, P. R. China
Yuan Lin*
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China
Get access

Abstract

Vanadium oxides thin films with variable oxidation states have attracted great attention due to their unique electrical, optical properties and many important applications in microelectronics, infrared optical devices, and energy harvest systems. However, to fabricate vanadium oxide thin films with controllable phases and desired transport properties is still a challenge by using a chemical solution deposition (CSD) technique. In this paper, we report that vanadium oxide thin films with well controlled phases such as rhombohedral V2O3 and monoclinic VO2 could be synthesized on Al2O3 (0001) substrates using a CSD technique ---- polymer assisted deposition (PAD). Both V2O3 and VO2 thin films can be well controlled with good epitaxial quality by optimizing the fabrication parameters. The electrical resistivity changes 3∼4 orders of magnitude at metal insulator transition for both epitaxial V2O3 and VO2 thin films. The correlation between the physical properties and the microstructures of the films will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Rodolakis, F., Hansmann, P., Rueff, J. P., Toschi, A., Haverkort, M. W., Sangiovanni, G., Tanaka, A., Saha-Dasgupta, T., Andersen, O. K., Held, K., Sikora, M., Alliot, I., Itie, J. P., Baudelet, F., Wzietek, P., Metcalf, P. and Marsi, M., Phys. Rev. Lett. 104, 047401 (2010).CrossRef
Goldflam, M. D., Driscoll, T., Chapler, B., Khatib, O., Jokerst, N. M., Palit, S., Smith, D. R., Kim, B. J., Seo, G., Kim, H. T., Di Ventra, M. and Basov, D. N., Appl. Phys. Lett. 99, 044103 (2010).CrossRef
Huang, Z. L., Chen, S. H., Lv, C. H., Huang, Y. and Lai, J. J., Appl. Phys. Lett. 101, 191905 (2012).CrossRef
Yan, C. Z., Chen, Z., Peng, Y. T., Guo, L. and Lu, Y. F., Nanotechnology 23, 475701 (2012).CrossRef
Guo, H., Chen, K., Oh, Y., Wang, K., Dejoie, C., Asif, S. A. S., Warren, O. L., Shan, Z. W., Wu, J. and Minor, A. M., Nano Lett. 11, 3207 (2011).CrossRef
Weber, C., O'Regan, D. D., Hine, N. D. M., Payne, M. C., Kotliar, G. and Littlewood, P. B., Phys. Rev. Lett. 108, 256402 (2012).CrossRef
Zou, G. F., Zhao, J., Luo, H. M., McCleskey, T. M., Burrell, A. K. and Jia, Q. X., Chem. Soc. Rev. 42, 439 (2013).CrossRef
Gao, B. J., An, F. Q. and Liu, K. K., Appl. Sur. Sci. 253, 1946 (2006).CrossRef
Ji, Y. D., Pan, T. S., Bi, Z., Liang, W. Z., Zhang, Y., Zeng, H. Z., Wen, Q. Y., Zhang, H. W., Chen, C. L., Jia, Q. X. and Lin, Y., Appl. Phys. Lett. 101, 071902 (2012).CrossRef