Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T07:33:20.240Z Has data issue: false hasContentIssue false

Growth and Morphology of Graphene on Silicon Carbide Nanoparticles

Published online by Cambridge University Press:  07 June 2012

Dieter M. Gruen
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Marshall H. Mendelsohn
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Marquis Kirk
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Get access


Catalytic synthesis of graphene occurs when methane reacts with cubic SiC nanopowder at 1000-1200K. The composite, created under relatively mild experimental conditions, consists primarily of 30-40 nm diameter cylinders with aspect ratios near unity whose walls are composed of 10-20 layers of graphene surrounding nano-SiC particles. Sputtering by electron irradiation sequentially removes the graphene shells thus exposing the SiC cores. Electron as well as X-ray diffraction studies reveal the highly crystalline nature of the graphene shells which constitute 90 mol% of the composites. Raman data support a model involving growth of graphene on carbon rather than on silicon terminated SiC.

Research Article
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Charrier, A., Coati, A., Argunova, T., Thibaudau, F., Garreau, Y., Pinchaux, R., Forbeaux, I., Debever, J.-M., Sauvage-Simkin, M., and Themlin, J.-M., J. Appl. Phys. 92, 2479 (2002).Google Scholar
2. Nagashima, A., Teijima, N., Gamou, Y., Kawai, T., and Oshima, C., Phys. Rev. B 51, 4606 (1995)Google Scholar
3. Itoh, H., Ichinose, T., Oshima, C., Ichinokawa, T., and Aizawa, T., Surf. Science 254, L437 (1991)Google Scholar
4. Wu, X., Li, X., Song, Z., Berger, C., and De Heer, W. A., Phys. Rev. Lett. 98, 136801 (2007).Google Scholar
5. Strupinski, W., Grodecki, K., Wysmolek, A., Stepniewski, R., Szkopek, T., Gaskell, P. E., Gruneis, A., Haberer, D., Bozek, R., Krupka, J., and Baranowski, J. M., Nano Lett. 11, 1786 (2011).Google Scholar
6. Jin, C., Lan, H., Peng, L., Suenaga, K., and Iijima, S., Phys. Rev. Lett. 102, 205501 (2009).Google Scholar
7. Warner, J. H., Rummel, M. H., Bachmantiuk, A., and Buchner, B., Nanotechnology 21, 325702 (2010).Google Scholar
8. Egerton, R. F. and Crozier, P. A., Microscopy and Microanalysis 10, 54 (2004).Google Scholar
9. Colby, R., Bolen, M. L., Capano, M. A., and Stach, E. A., Appl. Phys. Lett. 99, 101904 (2011).Google Scholar
10. Andersson, O. E., Prasad, B. L. V., Sato, H., Enoki, T., Hishiyama, Y., Kaburagi, Y., Yoshikawa, M., and Bandow, S., Phys. Rev. B 58, 16387 (1998).Google Scholar
11. Gruen, D. M., Bruno, P. and Xie, M., Appl. Phys. Lett. 92, 143118 (2008).Google Scholar
12. Gruen, D. M., Bruno, P., Arenal, R., Routbort, J., Singh, D., and Xie, M., J. Appl. Phys. 105, 073710 (2009).Google Scholar
13. Ni, Z. H., Chen, W., Fan, X. F., Kuo, J. L., Yu, T., Wee, A. T. S., and Shen, Z. X., Phys. Rev. B 77, 115416, (2008).Google Scholar
14. Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
15. Mattausch, A. and Pankratov, O., Phys. Rev. Lett. 99, 076802 (2007).Google Scholar
16. Hass, J., Varchon, F., Millan-Otoya, J. E., Sprinkle, M., Sharma, N., de Heer, W. A., Berger, C., First, P. N., Magaud, L., and Conrad, E. H., Phys. Rev Lett. 100, 125504 (2008).Google Scholar
17. Berger, C., Song, Z. M., Li, X. B., Wu, X. S, Brown, N., Naud, C., Mayou, D., Li, T. B., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., and De Heer, W. A., Science 312, 1191 (2006).Google Scholar
18. Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B. N., Naud, C., Mallet, P., Veuillen, J. Y., Berger, C., Conrad, E. H., and Magaud, L., Phys. Rev. Lett. 99, 126805 (2007).Google Scholar