Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-662rr Total loading time: 0.499 Render date: 2022-05-27T04:37:48.731Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Growth and Integration of High-Density CNT for BEOL Interconnects

Published online by Cambridge University Press:  01 February 2011

Ainhoa Romo Negreira
Affiliation:
IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Daire J. Cott
Affiliation:
cottd@imec.be, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Anne S. Verhulst
Affiliation:
averhuls@imec.be, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Santiago Esconjauregui
Affiliation:
sesconjauregui@email.it, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Nicolo′ Chiodarelli
Affiliation:
chiodarn@imec.be, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Johan Ek Weis
Affiliation:
jekweis@hotmail.com, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Caroline M. Whelan
Affiliation:
whelan@imec.be, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Guido Groeseneken
Affiliation:
groes@imec.be, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Marc Heyns
Affiliation:
heyns@imec.be, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Stefan De Gendt
Affiliation:
degendt@imec.be, IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Philippe M. Vereecken
Affiliation:
philippe.vereecken@imec.be, IMEC, AMPS/NANO, Kapeldreef 75, Leuven, B-3001, Belgium, +32 16 28 8330, +32 16 28 1576
Get access

Abstract

The integration of high-density CNT bundles as via interconnects in a CNT/Cu-hybrid BEOL stack is evaluated. CNT via-conduits may greatly improve heat dissipation and as such lower interconnect resistance and improve electromigration resistance. Each carbon shell of the nanotube contributes to electrical and thermal conduction and densities as high as 5×1013 shells per cm2 are estimated necessary. CNT growth processes on BEOL compatible metals are presented with tube densities up to 1012cm−2 and shell densities approaching 1013 cm−2 on blanket substrates. Selective growth of CNT bundles with carbon shell densities around 1012cm−2 is demonstrated with high yield. Ohmic behavior of TiN/CNT/Ti contacts is shown with a CNT via resistivity of 1.2 mΩ cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, R., Dresselhaus, G., Dresselhaus, M. S.. Physical Properties of Carbon Nanotubes Imperial College Press, London (1998)CrossRefGoogle Scholar
2. Qin, Lu-Chang, Zhao, Xinluo, Hirahara, Kaori, Miyamoto, Yoshiyuki, Ando, Yoshinori, Iijima, Sumio. Nature, 408, 50 (2000).CrossRefGoogle Scholar
3. Verhulst, A. S., Bamal, M., Groeseneken, G., IMEC internal report (2005).Google Scholar
4. Srivastava, N., Joshi, R. V. and Banerjee, K., Carbon Nanotube Interconnects: Implications for Performance, Power Dissipation and Thermal Management, IEDM (2005)Google Scholar
5. Li, Hong, Srivastava, Navin, Mao, Jun-Fa, Yin, Wen-Yan and Banerjee, Kaustav, Carbon Nanotube Vias: A Reality Check, IEEE (2007)CrossRefGoogle Scholar
6. , Raychowdhury and Roy, K., Carbon Nanotubes as Interconnects of the Future: A Circuit Perspective, Proc. of the Advanced Metallization Conference, San Diego, October 2004 Google Scholar
7. Li, S., Yu, Z., Rutherglen, C., and Burk, P.J., Nano Lett. 4, 2003 (2004).CrossRefGoogle Scholar
8. Park, J-Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Üstünel, H., Braig, S., Arias, T.A., Brouwer, P.W., and McEuen, P.L., Nano Lett. 4, 517 (2004).CrossRefGoogle Scholar
9. Huang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Appl Phys A 74, 387 (2002).CrossRefGoogle Scholar
10. Cantoro, M., Hofmann, S., Pisana, S., Ducati, C., Parvez, A., Ferrari, A.C., Robertson, J., Diamond and Rel. Mat. 15, 1029 (2006)CrossRefGoogle Scholar
11. Zhang, G. et al. PNAS 102, 16141 (2005)CrossRefGoogle Scholar
12. Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A.C., Blackburn, A.M., Wang, K.Y., Robertson, J., Nano Lett 6, 1107 (2006)CrossRefGoogle Scholar
13. Zhong, G. F., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., Kawarada, H., Jpn. J. Appl. Phys. 1 44, 1558 (2005).CrossRefGoogle Scholar
14. Arcos, T. de los, Garnier, M. G., Oelhafen, P., Mathys, D., Seo, J. W., Domingo, C., Garcιa-Ramos, J. V., Sanchez-Cortes, S.. Carbon 42, 187 (2004).CrossRefGoogle Scholar
15. Cott, D.J., Vereecken, P.M., Negeira, A.R., Griffiths, H., DeGendt, S., (in preparation)Google Scholar
16. Negreira, A. Romo, Vereecken, P.M., Whelan, C. M., Maex, K., ECS transactions, 2, 409 (2007).CrossRefGoogle Scholar
17. Esconjauregui, S., Whelan, C.M. and Maex, K., Nanotechnol. 18, 015602 (2007).CrossRefGoogle Scholar
18. Esconjauregui, S., Whelan, C.M. and Maex, K., Nanotechnol. 19, 135306 (2008).CrossRefGoogle Scholar
19. Awano, Y., Sato, S., Kondo, D., Ohfuti, M., Kawabata, A., Nihei, M., Yokoyama, N., Phys. Stat. Sol. A 203, 14 (2006).CrossRefGoogle Scholar
20. Yokoyama, D., Iwasaki, T., Yoshida, T., Kawarada, H., Sato, S., Hyakushima, T., Nihei, M., Awano, Y., APL 91, 263101 (2007).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth and Integration of High-Density CNT for BEOL Interconnects
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Growth and Integration of High-Density CNT for BEOL Interconnects
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Growth and Integration of High-Density CNT for BEOL Interconnects
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *