Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-10-31T23:06:31.741Z Has data issue: false hasContentIssue false

Growth and Characterization of InAsxP1−x/InP Strained Multiple Quantum Wells by Gas Source Molecular Beam Expitaxy

Published online by Cambridge University Press:  10 February 2011

H. C. Kuo
Affiliation:
Dept. of Electrical and Computer Engineering, Microelectronics Laboratory. University of Illinois at Urbana Champaign, Urbana, IL 61801, U. S. A.h-kuol @students.uiuc.edu
S. Thomas
Affiliation:
Dept. of Electrical and Computer Engineering, Microelectronics Laboratory. University of Illinois at Urbana Champaign, Urbana, IL 61801, U. S. A.h-kuol @students.uiuc.edu
A. P. Curtis
Affiliation:
Dept. of Electrical and Computer Engineering, Microelectronics Laboratory. University of Illinois at Urbana Champaign, Urbana, IL 61801, U. S. A.h-kuol @students.uiuc.edu
G. E. Stillman
Affiliation:
Dept. of Electrical and Computer Engineering, Microelectronics Laboratory. University of Illinois at Urbana Champaign, Urbana, IL 61801, U. S. A.h-kuol @students.uiuc.edu
C. H. Lin
Affiliation:
Dept. of Material Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U. S. A.
H. Chen
Affiliation:
Dept. of Material Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U. S. A.
Get access

Abstract

InAsxPi.x/InP (10 period 50/100Å with x=0.25–0.79) pseudomorphically strained multiple quantum wells (SMQWs) were grown by gas source molecular beam expitaxy (GSMBE) at 470°C and characterized by cross-sectional transmission electron microscope (XTEM), double crystal x-ray diffraction (DCXRD), and optical spectroscopy. The structural analysis demonstrates that excellent control of the sharp interface and limited As-P interdiffusion can be achieved by GSMBE growth. XTEM images of these SMQWs display no misfit dislocations, and DCXRD scans reveal high order superlattice satellite peaks. Photoluminescence (PL) and transmission measurements were performed for all SMQWs to evaluate crystal quality. Only slight degradation in luminescence was observed as the As composition increased. Based on the three-band Kane model which includes the lattice strain, the transition energies of SMQWs were calculated using the conduction-band offset (Qc=δEc/δEg) as an adjustable parameter. The best fit of measured and calculated interband transition energies suggests that Qc is independent of As composition and is 0.70±0.05. Finally, a growth kinetics model based on the Langmuir equation was derived to realize the As/P incorporation ratio in the InAsP materials. Theoretical results show good agreement with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wood, E.C., in GalnAsP Alloy Semiconductors, edited by Pearsall, T. P. (Wiley, New York, 1982), 87106.Google Scholar
2. Schneider, P., and Wessels, B. W., J. Electron. Mater. 20, 1117 (1991).Google Scholar
3. Montie, E. A., Thijs, P. J. A., and 't Hooft, G. W., Appl. Phys. Lett. 53, 1611 (1988).Google Scholar
4. Oohashi, H., Hirono, T., Seki, S., Sugiura, H., Nakano, J., Yamamoto, M., Tohmori, Y., and Yokoyama, . K., J. Appl. Phys. 77, 4119(1995).Google Scholar
5. Hou, H. Q. and Tu, C. W., J. Appl. Phys. 75, 4673 (1994) and the references therein.Google Scholar
6. Sugiura, H., J. Cryst. Growth 164, 434 9(1996) and the references therein.Google Scholar
7. Thiagarajan, , Bernussi, A. A., Temkin, H., Robinson, G. Y., Sergent, A. M., Logan, R. A., Appl. Phys. Lett. 67, 3676 (1995).Google Scholar
8. Yamamoto, M., Yamamoto, N. and Nakano, J.. IEEE QE 30 554 (1994).Google Scholar
9. Sugiura, , Mitsuhara, M., Oohashj, H., Hirono, T. and Nakashima, K., J. Crystal Growth 147 (1995).Google Scholar
10. Hou, H. Q., Cheng, A. N., Wieder, H. H., Chang, W. S. C., and Tu, C. W., Appl. Phys. Lett. 63, 1833 (1993).Google Scholar
11. Chiù, H.H., Cunningham, J.E., Woodward, T.K. and Sizer, T. II Appl Phys. Lett. 62 (1993) 340.Google Scholar
12. Jiang, X. and Yu, P.K.L.. Appl. Phys. Lett. 65 2536(1994).Google Scholar
13. Kuo, H.C., Thomas, S., Curtis, A.P., Stillman, G.E., unpublished data.Google Scholar
14. Tanner, B. K., Adv. X-ray Anal. 33, 1 (1990).Google Scholar
15. Tweet, D., Matsuhata, H., Shioda, R., Oyanagi, H., Kamei, H., Appl. Phys. Lett., 67, 1286(1995).Google Scholar
16. Xie, Y. H., Gilmer, G. H., Roland, C., Silverman, P. J., Buratto, S. K., Cheng, J. Y., Fitzgerald, E. A., Kortan, A. R., Schuppler, S., Marcus, M. A., and Citrin, P. H., Phys. Rev. Lett. 73, 3006 (1994).Google Scholar
17. Sato, M., and Horikoshi, Y. J. J. Appl. Phys. 27, L2192(1988).Google Scholar
18. Beaudoin, M., Bensaada, A., Leonelli, R., Desjardins, P., Masut, R. A., Isnard, L., Chennouf, A., L'Espérance, G. Phys. Rev. BS3 1990(1996).Google Scholar
19. Kane, E. O., J. Phys. Chem. Solids 1, 249 (1957).Google Scholar
20. Pikus, G. E. and Bir, G. L., Fiz. Tverd. Tela(leningrad) 1, 154 (1959) [Sov. Phys. Solid State 1, 136 (1959)]; 1, 1642 (1959) [1, 1502 (1960)].Google Scholar
21. Swaminathan, V. and Macrander, A. T., Materials Aspects ofGaAs and InP Based Structures (Prentice Hall, Englewood Cliffs, NJ, 1991).Google Scholar
22. Physics of Group IV Elements and III-V Compounds, edited by Madelung, O., Landolt-Bornstein, , New Series, Group III, Vol. 17. Pt. a (Springer, Berlin, 1982).Google Scholar
23. Lee, T.-L., Liu, J.-S. and Lin, H.-H. J. Crystal Growth 155, 1622 (1995).Google Scholar