Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-x7pwn Total loading time: 0.238 Render date: 2021-05-14T18:18:56.246Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Growth and characterization of epitaxial films of ZnGeP2.

Published online by Cambridge University Press:  11 February 2011

G.A. Verozubova
Affiliation:
Institute of Optical Monitoring SB RAS, 10/3 Akademicheskii Tomsk, 634055, Russia
A. I. Gribenyukov
Affiliation:
Institute of Optical Monitoring SB RAS, 10/3 Akademicheskii Tomsk, 634055, Russia
M.C. Ohmer
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPSO, Wright-Patterson Air Force Base, Dayton, OH, USA
N.C. Fernelius
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPSO, Wright-Patterson Air Force Base, Dayton, OH, USA
J.T. Goldstein
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPSO, Wright-Patterson Air Force Base, Dayton, OH, USA
Get access

Abstract

Thermodynamic analysis of the vapor phase over ZnGeP2 in Zn-Ge-P-Cl system has been carried out. The analysis showed that this system can be used for the vapor growth of ZnGeP2. Homoepitaxial layers of ZnGeP2 were grown in a closed system using chemical vapor transport. Electrical and photoluminescence properties of the layers were studied, and crystal lattice parameters were measured. Comparison of properties for bulk and vapor grown ZnGeP2 crystals were carried out. It was found that the vapor grown crystals have more perfect structure than the bulk ones, particularly, they have significantly lower vacancy concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Giles, N.C. and Halliburton, L.E., Native Defects in the Ternary Chalcopyrites. MRS Bulletin, July 1998, pp 3740.CrossRefGoogle Scholar
2. Verozubova, G.A., Gribenyukov, A.I., Korotkova, V.V., Trofimov, A., Vere, A.W., Flynn, C.J., Ynda, N.T., Ivanov, Yu.F.. Effect of high power electron irradiation on defect structure of the ZnGeP2 single crystals. Fifth International Conference on Modification of Materials with Particle Beams and Plasma Flows, Proceedings, Tomsk, Russia, 2000, pp. 323326.Google Scholar
3. Vere, A W, Taylor, L L, Smith, P C, Flynn, C J, Saker, M K and Jones, J Mat. Res. Symp. Proc. 484 (1998) 495505 CrossRefGoogle Scholar
4. Verozubova, G.A., Gribenyukov, A.I., Korotkova, V.V.. Mat. Science and Eng., B48 (1997), 191197.CrossRefGoogle Scholar
5. Thermal constant of materials. Reference book in 10 volumes, vol. 3 edited by Glushko, V.P., Moscow, VINITI, 1968.Google Scholar
6. Andreev, Yu. M., Voevodin, V.G., Vjatkin, A.P. and Zuev, V.V.. “Nonlinear optical crystals for radiation conversion from IR lasers” In book: “Element base for optoelectronic devices”, edited by Zuev, V.E., Kabanov, M.V.. “Rasko”, Tomsk, 1992, pp. 5574.Google Scholar
7. Averkieva, G.K., et.al., USSR Conference on ternary compounds and their applications, Abstract book, Kishinev, Shiinitca, 1976, 31.Google Scholar
8. Grishenko, G.A., Sakalos, A.P., Sodeika, A.S., Tregub, I.G., Lithuanian physical collection, XIX, N6, 1979, pp797–780.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth and characterization of epitaxial films of ZnGeP2.
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth and characterization of epitaxial films of ZnGeP2.
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth and characterization of epitaxial films of ZnGeP2.
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *