Hostname: page-component-594f858ff7-7tp2g Total loading time: 0 Render date: 2023-06-08T23:29:24.337Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Group-III Nitride Etch Selectivity in BCl3/Cl2 ICP Plasmas

Published online by Cambridge University Press:  15 February 2011

R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
L. Zhang
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
C. G. Willison
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
J. Hong
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
L. F. Lester
Affiliation:
University of New Mexico, Electrical Engineering, Albuquerque, NM
Get access

Abstract

Patterning the group-III nitrides has been challenging due to their strong bond energies and relatively inert chemical nature as compared to other compound semiconductors. Plasma etch processes have been used almost exclusively to pattern these films. The use of high-density plasma etch systems, including inductively coupled plasmas (ICP), has resulted in relatively high etch rates (often greater than 1.0 μm/min) with anisotropic profiles and smooth etch morphologies. However, the etch mechanism is often dominated by high ion bombardment energies which can minimize etch selectivity. The use of an ICP-generated BCl3/Cl2 plasma has yielded a highly versatile GaN etch process with rates ranging from 100 to 8000 Å/min making this plasma chemistry a prime candidate for optimization of etch selectivity. In this study, we will report ICP etch rates and selectivities for GaN, AIN, and InN as a function of BCl3/C12 flow ratios, cathode rf-power, and ICP-source power. GaN:InN and GaN:AIN etch selectivities were typically less than 7:1 and showed the strongest dependence on flow ratio. This trend may be attributed to faster GaN etch rates observed at higher concentrations of atomic Cl which was monitored using optical emission spectroscopy (OES).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adesida, I., Mahajan, A., Andideh, E., Khan, M. Asif, Olsen, D. T., and Kuznia, J. N., Appl. Phys. Lett. 63, 2777 (1993).CrossRefGoogle Scholar
2. Lin, M. E., Zan, Z. F., Ma, Z.. Allen, L. H., and Morkoq, H., Appl. Phys. Lett. 64, 887 (1994).CrossRefGoogle Scholar
3. Ping, A. T., Adesida, I., Khan, M. Asif, and Kuznia, J. N., Electron. Lett. 30, 1895 (1994).CrossRefGoogle Scholar
4. Lee, H., Oberman, D. B., and Harris, J. S. Jr, Appl. Phys, Lett. 67, 1754 (1995).CrossRefGoogle Scholar
5. Pearton, S. J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P. W., Katz, A., and Constantine, C., Semicond. Sci. Technol. 8, 310 (1993).CrossRefGoogle Scholar
6. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 3643 (1994).CrossRefGoogle Scholar
7. Shul, R. J., Kilcoyne, S. P, Crawford, M. Hagerott, Parmeter, J. E., Vartuli, C. B., C. R.Google Scholar
8. Zhang, L., Ramer, J., Brown, J., Zheng, K., Lester, L. F., Hersee, S. D., Appl. Phys. Lett. 68, 367 (1996).CrossRefGoogle Scholar
9. Humphreys, B. and Govett, M., MIJNSR 1, (1996).Google Scholar
10. Shul, R. J., McClellan, G. B., Casalnuovo, S. A., Rieger, D. J., Pearton, S. J., Constantine, C., Barratt, C., Karlicek, R. F. Jr, Tran, C., and Schurman, M., Appl. Phys. Lett. 69, 1119 (1996).CrossRefGoogle Scholar
11. Vartuli, C. B., Pearton, S. J., Lee, J. W., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., J. Vac. Sci. and Technol B15, 98 (1997).CrossRefGoogle Scholar
12. Vartuli, C. B, Pearton, S. J., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., J. Electrochem. Soc. 143, L246 (1996).CrossRefGoogle Scholar
13. Hong, J., Maeda, T., Donovan, S. M., MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Han, J., MIJNSR 3, 5 (1998).Google Scholar
14. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).CrossRefGoogle Scholar
15. Shul, R. J., Ashby, C. I. H., Rieger, D. J., Howard, A. J., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Barnes, P. A., and Davis, P., Mat. Res. Soc. Symp. Proc. Vol. 395, 751 (1996).CrossRefGoogle Scholar
16. Lee, J. W., Hong, J., and Pearton, S. J., Appl. Phys. Lett. 68, 847 (1996).CrossRefGoogle Scholar
17. Constantine, C., Barratt, C., Pearton, S. J., Ren, F., and Lothian, J. R., Electron. Lett. 28, 1749 (1992).CrossRefGoogle Scholar
18. Constantine, C., Barratt, C., Pearton, S. J., Ren, F., and Lothian, J. R., Appl. Phys. Lett. 61, 2899 (1992).CrossRefGoogle Scholar
19. Lishan, D. G. and Hu, E. L., Appl. Phys. Lett. 56, 1667 (1990).CrossRefGoogle Scholar
20. Cho, Hyun, Hong, J., Maeda, T., Donovan, S. M., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Han, J., J. Electron. Mats. 27, 915 (1998).CrossRefGoogle Scholar
21. Smith, S. A., Wolden, C. A., Bremser, M. D., Hanser, A. D., and Davis, R. F., Appl. Phys. Lett. 71, 3631, 1997.CrossRefGoogle Scholar
22. Vartuli, C. B., Pearton, S. J., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., J. Electrochem. Soc. 143, L246 (1996).CrossRefGoogle Scholar
23. Lee, J. W., Cho, Hyun, Hays, D. C., Abernathy, C. R., Pearton, S. J., Shul, R. J., Vawter, G. A., and Han, J., IEEE J. of Selected Topics in Quantum Electronics, 4, 557 (1998).Google Scholar
24. Shul, R. J., Willison, C. G., Bridges, M. M., Han, J., Lee, J. W., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Donovan, S. M., Zhang, L., and Lester, L. F., J. Vac. Sci. Technol A16, 1621 (1998).CrossRefGoogle Scholar
25. Shul, R. J., Willison, C. G., Bridges, M. M.,. Han, J., Lee, J. W., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Donovan, S. M., Mat. Res. Soc. Symp. Proc. Vol. 483, 155 (1998).CrossRefGoogle Scholar
26. Lee, J. W., Hong, J., and Pearton, S. J., Appl. Phys. Lett. 68, 847 (1996).CrossRefGoogle Scholar
27. Lee, Y. H., Kim, H. S., Kwon, W. S., Yeom, G. Y., Lee, J. W., Yoo, M. C., and Kim, T. I., J. Vac. Sci. Technol. A16, 1478 (1998).CrossRefGoogle Scholar
28. Shul, R. J., Ashby, C. I. H., Willison, C. G., Zhang, L., Han, J., Bridges, M. M., Pearton, S. J., Lee, J. W., and Lester, L. F., Mats. Res. Soc. Symp. Proc. 512, 487 (1998).CrossRefGoogle Scholar