Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-25T00:43:51.300Z Has data issue: false hasContentIssue false

Germanium ALD/CVD Precursors for Deposition of Ge/GeTe Films

Published online by Cambridge University Press:  01 February 2011

William Hunks
Affiliation:
whunks@atmi.com, ATMI, Chemistry, 7 Commerce Dr., Danbury, CT, 06810, United States
Philip S. Chen
Affiliation:
pchen@atmi.com, ATMI, 7 Commerce Dr., Danbury, CT, 06810, United States
Tianniu Chen
Affiliation:
tchen@atmi.com, ATMI, 7 Commerce Dr., Danbury, CT, 06810, United States
Matthias Stender
Affiliation:
mstender@atmi.com, ATMI, 7 Commerce Dr., Danbury, CT, 06810, United States
Gregory T. Stauf
Affiliation:
gstauf@atmi.com, ATMI, 7 Commerce Dr., Danbury, CT, 06810, United States
Leah Maylott
Affiliation:
lmaylott@atmi.com, ATMI, 7 Commerce Dr., Danbury, CT, 06810, United States
Chongying Xu
Affiliation:
cxu@atmi.com, ATMI, 7 Commerce Dr., Danbury, CT, 06810, United States
Jeffrey F. Roeder
Affiliation:
jroeder@atmi.com, ATMI, 7 Commerce Dr., Danbury, CT, 06810, United States
Get access

Abstract

In order to deposit conformal films in the high aspect ratio trench and via structures in future high-density phase-change memory devices, suitable ALD/CVD precursors are needed. We report on the development of novel germanium(II) metal-organic ALD/CVD precursors containing amide, cyclopentadienyl, and amidinate ligands. The physical properties, volatility, and thermal behavior of the precursors were evaluated by simultaneous thermal analysis (STA) and vapor pressure measurements. Stability studies were conducted to investigate the suitability of the precursors for use as ALD/CVD precursors for device manufacturing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wuttig, M. Yamada, N. Nature Mat. 6, 824 (2007).Google Scholar
2. Hudgens, S. Johnson, B. MRS Bulletin 29, 829 (2004).Google Scholar
3. Kim, R.Y. Kim, H.G. Yoon, S.G. Appl. Phys. Lett. 89, 102107 (2006).Google Scholar
4. Choi, B.J. Choi, S. Shin, Y.C. Hwang, C.S. Lee, J.W. Jeong, J. Kim, Y.J. Hwang, S.Y. Hong, S.K. J. Electrochem. Soc. 154(4), H318 (2007).Google Scholar
5. Choi, B.J. Choi, S. Shin, Y.C. Kim, K.M. Hwang, C.S. Kim, Y.J. Son, Y.J. Hong, S.K. Chem. Mater. 19, 4387 (2007).Google Scholar
6. Yim, R.Y. Kim, H.G. Yoon, S.G. J. Appl. Phys. 102, 083531 (2007).Google Scholar
7. Shenai, D.V. DiCarlo, R.L. Jr., Power, M.B. Amamchyan, A. Goyette, R.J. Woelk, E. J. Cryst. Growth 298, 172 (2007).Google Scholar
8. Lee, J. Choi, S. Lee, C. Kang, Y. Kim, D. Appl. Surf. Sci. 253, 3969 (2007).Google Scholar
9. Chen, T. Xu, C. Hunks, W. Stender, M. Stauf, G.T. Chen, P.S. Roeder, J.F. ECS Transactions 11(7), 269 (2007).Google Scholar