Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T18:54:14.379Z Has data issue: false hasContentIssue false

GaP Nanostructures: Nanowires, Nanobelts, Nanocables, and Nanocapsules

Published online by Cambridge University Press:  01 February 2011

Hee Won Seo
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339–700, South Korea
Seung Yong Bae
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339–700, South Korea
Jeunghee Park
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339–700, South Korea
Get access

Abstract

Various GaP nanostructures such as nanowires, nanobelts, nanocables, and nanocapsules were synthesized by sublimation of ball-milled powders. They have a single-crystalline zinc blende structure with [111] growth direction. The morphology and structure were controlled by reactant gas, growth time, flow rate, and growth temperature. The size, morphology and properties of the nanostructures were examined by scanning electron microscopy, transmission electron microscopy, electron energy-loss spectroscopy (EELS), electron diffraction, energy dispersive x-ray spectroscopy, powder x-ray diffraction, and Raman spectroscopy using a 514.5 nm argon ion laser. The photoluminescence was carried out using the 458 nm line of an argon ion laser as the excitation source. The GaP nanowires are straight, cylindrical, and smooth in surface, with mean diameter of 40 nm and length up to 300 mm. The nitrogen-doped nanobelts and nanowires were synthesized by ammonia ambient gas. EELS data reveals that the nitrogen doping occurs mainly in the surface region. The PL spectrum shows the typical isoelectronic bound exciton peaks in the range of 2.11∼2.25 e V, suggesting a concentration of (1018 cm-3 nitrogen atoms. We also synthesized two types of GaP nanocables; GaP nanowire sheathed with the amorphous silicon oxide layers and with the graphite layers. The core-shell diameter is under 30 nm and the outerlayer can be removed by acid treatment to produce the 10 nm diameter GaP nanowires. The GaP encapsulated with BCN nanotubes were synthesized under the ammonia flow using the ball-milled carbon-containing boron oxide powders. The number of BCN layers is typically 10∼20.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

References

REFERENCES

1. Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
2. Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C. M., Nature (London) 409, 66 (2001).Google Scholar
3. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., Lieber, C. M., Nature (London) 415, 617(2002).Google Scholar
4. Lauhon, L. J., Gudiksen, M. S., Wang, D., Lieber, C. M., Nature (London) 420, 57 (2002).Google Scholar
5. Duan, X., Huang, Y., Agarwal, R., Lieber, C. M., Nature (London) 421, 241 (2003).Google Scholar
6. Choi, H. J., Johnson, J. C., He, R., Lee, S. –K., Kim, F., Pauzauskie, P.; Goldberger, J.; Saykelly, R. J.; Yang, P. J. Phys. Chem. B 107, 8721 (2003).Google Scholar
7. Duan, X., Lieber, C. M., Adv. Mater. 12, 298 (2000).Google Scholar
8. Tang, C., Fan, S., Chapelle, M. Lamy de la, Dang, H., Li, P., Adv. Mater. 12, 1346 (2000).Google Scholar
9. Shi, W. S., Zheng, Y. F., Wang, N., Lee, C. S., Lee, S. T., J. Vac. Sci. Technol. B 19, 1115(2001).Google Scholar
10. Seo, H. W., Bae, S. Y., Park, J., Yang, H., Kim, S., Chem. Commun. 2564 (2002).Google Scholar
11. Seo, H. W., Bae, S. Y., Park, J., Yang, H., Kang, M., Kim, S., Appl. Phys. Lett. 82, 3752 (2003).Google Scholar
12. Seo, H. W., Bae, S. Y., Park, J., Kang, M., Kim, S., Chem. Phys. Lett. 378, 420 (2003).Google Scholar
13. Pankove, J. I., Optical processes in Semiconductors, Dover, New York (1971)Google Scholar
14. Bazhenov, V. K. and Fistul', V. I., Sov. Phys. Semicond. 18, 843 (1984).Google Scholar
15. Nasibov, A. S., Mel'nik, N. N., Ponomarev, I. V., Romanko, S. V., Topchii, S. B., Obraztsov, A. N., Yu Bashtanov, M., Krasnovskii, A. A., Quantum Electron. 28, 40 (1998).Google Scholar
16. Tuinstra, F., Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
17. Yap, Y. K., Yoshimura, M., Mori, Y., Sasaki, T., Appl. Phys. Lett. 80, 2559 (2002).Google Scholar
18. Zhi, C. Y., Bai, X. D., Wang, E. G., Appl. Phys. Lett. 80, 3590 (2002).Google Scholar