Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-cgcw8 Total loading time: 0.171 Render date: 2021-09-22T12:49:31.404Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Fracture Surfaces in 3D Fuse Networks

Published online by Cambridge University Press:  15 February 2011

V. I. Räisänen
Affiliation:
Centre for Scientific Computing, P. O. Box 405, FIN-02101 Espoo, Finland
M. J. Alava
Affiliation:
Michigan State University, Department of Physics and Astronomy, E. Lansing, MI 48824–1116, U.S.A Laboratory of Physics, Helsinki U. of Technology, Otakaari 1M, SF-02150 Espoo, Finland (December 5, 1995)
R. M. Nieminen
Affiliation:
Centre for Scientific Computing, P. O. Box 405, FIN-02101 Espoo, Finland Laboratory of Physics, Helsinki U. of Technology, Otakaari 1M, SF-02150 Espoo, Finland (December 5, 1995)
Get access

Extract

We study a 3D random fuse network model with computer simulations. The breaking thresholds are distributed randomly, corresponding to quenched disorder. We find for the roughness exponent of the final fracture surface ζ = 0.47 ± 0.19, which is close both the minimum energy surface value and the directed percolation depinning model value in 2+1 dimensions. It is also similar to results from measurements of fracture surfaces at nanometer scale, and from experiments in which the fracture process occurs slowly as in fatique. The traditional measure of damage, the number of broken bonds grows faster than the area effect (nb ˜ L2.28), with no signs of a trivally brittle regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bouchaud, E., Lapasset, G. and Planès, J., Europhys. Lett. 13, 73 (1990) (and references therein).CrossRefGoogle Scholar
[2] Bouchaud, E. and Bouchaud, J.-P., Phys. Rev. B 50, 17 752 (1994).CrossRefGoogle Scholar
[3] Måløy, K. J., Hansen, A. and Hinrichsen, E. L., Phys. Rev. Lett. 68, 213 (1992).CrossRefGoogle Scholar
[4] Milman, V. Yu., Blumenfeld, R., Stelniashenko, N. A. and Ball, R. C., Phys. Rev. Lett. 71, 204 (1993).CrossRefGoogle Scholar
[5] Bouchaud, E. and Navéos, S., J. Phys. I (France) 5, 547 (1995).Google Scholar
[6] Miller, S. and Reifenberger, R., J. Vac. Sci. Tech. B 10, 1203 (1992).CrossRefGoogle Scholar
[7] Schinittbuhl, J., Roux, S. and Berthaud, Y., Europhys. Lett. 28, 585 (1994).CrossRefGoogle Scholar
[8] Mandelbrot, B. B., Passoja, D. E. and Paullay, A. J., Nature (London) 308, 721 (1984).CrossRefGoogle Scholar
[9] Mu, Z. Q. and Lung, C. W., J. Phys. D 21, 848 (1988).CrossRefGoogle Scholar
[10] Long, Q. Y., Suqin, L. and Lung, C. W., J. Phys. D 24, 602 (1991).CrossRefGoogle Scholar
[11] Mosolov, A. B., Europhys. Lett. 24, 673, 1993.CrossRefGoogle Scholar
[12] Hansen, A., Hinrichsen, E. L. and Roux, S., Phys. Rev. Lett. 66, 2476 (1991).CrossRefGoogle Scholar
[13] Kardar, M. and Zhang, Y.-C., Phys. Rev. Lett. 58, 2087 (1987); D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 (1985).CrossRefGoogle Scholar
[14] Kardar, M., Parisi, G. and Zhang, Y.-C., Phys. Rev. Lett. 56, 889 (1986).CrossRefGoogle Scholar
[15] Roux, S., Hansen, A. and Guyon, E., J. Phys. (Paris) 48, 2125 (1987).CrossRefGoogle Scholar
[16] Kardar, M. and Zhang, Y.-C., Europhys. Lett. 8, 233 (1989).CrossRefGoogle Scholar
[17] cf. e.g. Ch. 26 in Barabási, A.-L., Stanley, H. E., Fractal Concepts in Surface Growth, Cambridge University Press, 1995, Cambridge, UK.CrossRefGoogle Scholar
[18] Amnaral, L. A. N. et al., Phys. Rev. E 51, 4655 (1995).CrossRefGoogle Scholar
[19] Bouchaud, J. P. et al., Phys. Rev. Lett. 71, 2240 (1993).CrossRefGoogle Scholar
[20] Kahng, B. et al., Phys. Rev. B 37, 7625 (1988).CrossRefGoogle Scholar
[21] Duxbury, P. M., Leath, P. L. and Beale, P. D., Phys. Rev. B 36, 367 (1987); P. M. Duxbury, P. L. Leath and P. D. Beale, Phys. Rev. Lett. 57, 1053 (1986).CrossRefGoogle Scholar
[22] Duxbury, P. M., Beale, P. D. and Moukarzel, C., Phys. Rev. B 51, 3476 (1995); C. Moukarzel and P. M. Duxbury, J. Appl. Phys. 76, 4086 (1994).CrossRefGoogle Scholar
[23] Arbabi, S. and Sahimi, M., Phys. Rev. B 41, 772 (1990).CrossRefGoogle Scholar
[24] Sahimi, M. and Arbabi, S., Phys. Rev. B 47, 713 (1993).CrossRefGoogle Scholar
[25] Geist, A. et al., PVM 3 User's Guide and Reference Manual, ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A, 1994.Google Scholar
[26] Räisänen, V. I. and Alava, M. J., submitted for publication.Google Scholar
[27] Arcangelis, L. de and Herrmann, H. J., Phys. Rev. B 39, 2678 (1989).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fracture Surfaces in 3D Fuse Networks
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fracture Surfaces in 3D Fuse Networks
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fracture Surfaces in 3D Fuse Networks
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *