Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-hjh89 Total loading time: 0.705 Render date: 2021-09-24T16:30:14.435Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Formation of ZnSe/GaAs Heterovalent Heterostructures by Movpe

Published online by Cambridge University Press:  03 September 2012

Mitsuru Funato
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-01, Japan
Satoshi Aoki
Affiliation:
funato@kuee.kyoto-u.ac.jp
Shizυo Fujita
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-01, Japan
Shigeo Fujita
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-01, Japan
Get access

Abstract

ZnSe/GaAs (001) heterovalent heteгostructures are fabricated by metalorganic vapor phase epitaxy. During the growth, both GaAs and ZnSe surfaces are kept atomically flat to achieve precise control of the interface formation. Interface composition, Ga/As, are controlled by means of either Zn or Se treatment of a GaAs surface, and then ZnSe growth follows. Consequently, it is revealed by X-ray photoemission spectroscopy (XPS) that artificial control of Ga/As from 1.0 to 2.8 leads to the variation of valence band offsets from 0.6 to 1.1 eV. Based on the electron counting model and layer-attenuation model, it is proposed that the As plane just below the interface consists of As, anti-site Ga and As vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nicolini, R., Vanzetti, L., Mula, G., Bratina, G., Soгba, L., Franciosi, A., Peressi, M., Baroni, S., Resta, R., Baldereschi, A., Angelo, J. E. and Gerrich, W. W., Phys. Rev. Lett. 72, 294 (1994)CrossRefGoogle Scholar
2 Kley, A. and Neugebauer, J., Phys. Rev. B 50, 8616 (1994)CrossRefGoogle Scholar
3 Dandrea, R. G., Froyen, S. and Zunger, A., Phys. Rev. B 42, 3213 (1990)CrossRefGoogle Scholar
4 Kunc, K. and Martin, R. M., Phys. Rev. B 24, 3445 (1981)CrossRefGoogle Scholar
5 Bratina, G., Vanzetti, L., Bonanni, A., Soгba, L., Paggel, J. J., Fгanciosi, A., Peluso, T. and Tapfer, L., J. Crystal Growth, 159, 703 (1996)CrossRefGoogle Scholar
6 Grant, R. W., Waldrop, J. R., Kowalczyk, S. P. and Kraut, E. A., J. Vac. Sci. Technol. B 3, 1295 (1985)CrossRefGoogle Scholar
7 Funato, M., Fujita, Sz. and Fujita, Sg., Jpn. J. Appl. Phys. 33, 4851 (1994)CrossRefGoogle Scholar
8 Kamiya, I., Aspnes, D. E., Tanaka, H., Florez, L. T., Harbison, J. P. and Bhat, R., Phys. Rev. Lett., 68, 627 (1992)CrossRefGoogle Scholar
9 Reinhardt, F., Richter, W., Müller, A. B., Gutsche, D., Kurpas, P., Ploska, L., Rose, K. C. and Zorn, M., J. Vac. Sci. Technol. B11, 1427 (1993)CrossRefGoogle Scholar
10 Funato, M., Aoki, S., Fujita, Sz. and Fujita, Sg., Jpn. J. Appl. Phys. (submitted)Google Scholar
11 Chelluri, B., Chang, T. Y., Ouгmazd, A., Dayem, A. H., Zyskind, J. L. and Srivastava, A., Appl. Phys. Lett., 49, 1665 (1986)CrossRefGoogle Scholar
12 Waldrop, J. R., Grant, R. W., Kowalczyk, S. P. and Kraut, E. A., J. Vac. Sci. Technol. A3, 835 (1985)CrossRefGoogle Scholar
13 Li, D., Gonsalves, J. M., Otsuka, N., Qiu, J., Kobayashi, M. and Gunshoг, R. L., Appl. Phys. Lett. 57, 449 (1990)CrossRefGoogle Scholar
14 Kuo, L. H., Kimura, K., Yasuda, T., Miwa, S., Jin, C. G., Tanaka, K. and Yao, M., Appl. Phys. Lett. 68, 2413 (1996)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of ZnSe/GaAs Heterovalent Heterostructures by Movpe
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation of ZnSe/GaAs Heterovalent Heterostructures by Movpe
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation of ZnSe/GaAs Heterovalent Heterostructures by Movpe
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *