Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-jcwnq Total loading time: 0.305 Render date: 2021-10-25T08:29:20.859Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Formation of Silk Monolayers

Published online by Cambridge University Press:  15 February 2011

Wayne S. Muller
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
Lynne A. Samuelson
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
Stephen A. Fossey
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
David L. Kaplan
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
Get access

Abstract

Cast silk membranes exhibit useful properties. However, there is limited control over the molecular architecture in these structures. The Langmuir-Blodgett technique can enhance the control of the membrane structure and allow improved control over membrane properties. We have formed natural silk monolayers using the Langmuir technique. Silk fibroin, regenerated from Bombvx mori cocoons, formed stable monolayers evident from pressure/area isotherms. Multilayers of the silk fibroin monolayers were deposited on a number of substrates and characterized. Transmission Electron Microscopy (TEM) and ellipsometry data provide basic information about the physical characteristics of the monolayer. Preliminary analysis of electron diffraction data of the monolayer indicate polycrystalline structure, consistent with the known structure of silk. Infrared spectrometric analysis of the monolayer using Attenuated Total Reflectance (ATR) gave wavenumbers for Amide I, II, III and V bands which compare with the silk II conformation reported for cast silk membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuzuhara, A., Asakura, T., Tomoda, R., Matsunaga, T., J. Biotechnology 5, 199 (1987).CrossRefGoogle Scholar
2. Asakura, T., Yoshimizu, H., Kuzuhara, A., Matsunaga, T. J., J. Seric. Sci. Jpn. 57, 203 (1988).Google Scholar
3. Demura, M., Asakura, T., Biotechnol. Bioeng. 33, 598 (1989).CrossRefGoogle Scholar
4. Demura, M., Asakura, T., Kurso, T., Biosensors 4, 361 (1989).CrossRefGoogle Scholar
5. Demura, M., Asakura, T., Nakamura, E., Tamura, H., Journal of Biotechnol. 10, 113 (1989).CrossRefGoogle Scholar
6. Grasset, L., Cordier, D., Ville, A., Process Biochem. 14, 2 (1979).Google Scholar
7. Asakura, T., Kanetake, J., Demura, M., Poly-Plast. Technol. Eng. 28, 453 (1989).CrossRefGoogle Scholar
8. Yoshimizu, H., Asakura, T., Journal of Applied Polymer Science 40, 127 (1990).CrossRefGoogle Scholar
9. Magoshi, J., Magoshi, Y., Nakamura, S., Journal of Applied Polymer Science, Appl. Polym. Symp. 41, 187 (1985).Google Scholar
10. Magoshi, J., Kamiyama, S., Nakamura, S., Proceedings of the 7th International Wool Textile Research Conference, Tokyo 1, 337 (1985).Google Scholar
11. Kaplan, D.L., Lombardi, S.J., Muller, W.S., Fossey, S., Biomaterials Novel Materials from Biological Sources, edited by Byrom, D. (Stockton Press, New York, 1991), p. 1.Google Scholar
12. Lucas, F., Shaw, J.T.B., Smith, S.G., Adv. Prot. Chem. 13, 107 (1958).Google Scholar
13. Lucas, F., Nature 210, 952 (1966).CrossRefGoogle Scholar
14. Minoura, N., Tsukada, M., Masanobu, N., Biomaterials 11, 430 (1990).CrossRefGoogle Scholar
15. Calvert, P.D., Encyclopedia Materials Science and Engineering. Biological Macromolecules, (Pergamon Press, Oxford, 1988) p. 334.Google Scholar
16. Zemlin, J.C., Technical Report 69–29-CM (AD684333), US Army Natick Laboratories, Natick MA 1968.Google Scholar
17. Swart, R.M., Langmuir-Blodgett Films, edited by Roberts, G. (Plenum Press, New York, 1990) p. 273.CrossRefGoogle Scholar
18. Marsh, R.E., Corey, R.B., Pauling, L., Biochim. Biophysics Acta 16, 1 (1955).CrossRefGoogle Scholar
19. Fraser, R.D.B., MacRae, T.R., Conformation of Fibrous Proteins (Academic Press, New York, 1973).Google Scholar
20. Kaplan, D.L., Fossey, S., Viney, C., and Muller, W. in Hierarchically Structured Materials, edited by Aksay, I.A., Eric, Baer, Sarikaya, M., and Tirrell, D. (Mater. Res. Soc. Symp. Proc. 255, Pittsburgh, PA, 1992) pp. 1930.Google Scholar
21. Yoshimizu, H., Asakura, T., J. Appl. Poly. Sci. 40, 1745 (1990).CrossRefGoogle Scholar
22. Asakura, T., Kuzuhara, A., Tabeta, R., Saito, H., Macromolecules 18, 1841 (1985).CrossRefGoogle Scholar
23. Minoura, N., Masuhiro, T., Masanobu, N., Polymer 31, 265 (1990).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of Silk Monolayers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation of Silk Monolayers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation of Silk Monolayers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *