Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-17T02:29:02.657Z Has data issue: false hasContentIssue false

Formation of Cu2ZnSnS4 and Cu2ZnSnS4-CuInS2 Thin Films Investigated by In-Situ Energy Dispersive X-Ray Diffraction

Published online by Cambridge University Press:  01 February 2011

Alfons Weber
Affiliation:
alfons.weber@hmi.de, Hahn-Meitner-Institut, SE3, Glienicker Str. 100, Berlin, 14109, Germany
Immo Kötschau
Affiliation:
koetschau@hmi.de, Hahn-Meitner-Institut, Solar Energy Division, Glienicker Str. 100, Berlin, 14109, Germany
Susan Schorr
Affiliation:
susan.schorr@hmi.de, Hahn-Meitner-Institut, Solar Energy Division, Glienicker Str. 100, Berlin, 14109, Germany
Hans-Werner Schock
Affiliation:
hans-werner.schock@hmi.de, Hahn-Meitner-Institut, Solar Energy Division, Glienicker Str. 100, Berlin, 14109, Germany
Get access

Abstract

Chalcopyrite CuInS2 and the structurally related kesterite Cu2ZnSnS4 are known as photovoltaic absorber materials. In this study different precursor thin films of the quaternary Cu-Zn-Sn-S system (stacking: Mo/CuS/ZnS-SnS) and of the pentenary Cu-In-Zn-Sn-S system (stacking: Mo/CuIn/ZnS-SnS) were annealed in sulfur atmosphere. The predominant crystalline phases were detected by in-situ energy dispersive X-ray diffraction (EDXRD). Additionally the X-ray fluorescence signals of the film components were recorded to detect diffusion effects. For the quaternary system we found ZnS, CuS, Cu2-xS, Sn2S3 and SnS as main binary phases during annealing. The Sn2S3-SnS phase transition had a significant impact on the later formation of ternary/quaternary phases. A high diffusivity of copper can explain the little influence of the precursor stacking on the reaction path and may also be responsible for the poor adhesion of the films. For annealing temperatures above 450°C Cu2ZnSnS4 can be identified clearly by XRD. The incorporation of indium in the system leads to new diffraction peaks which can be explained by the formation of solid solutions in the system CuInS2-Cu2ZnSnS4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kobayashi, T., Jimbo, K., Tsuchida, K., Shinoda, S., Oyanagi, T., Katagiri, H., Jap. J. Appl. Phys. 44, 783787 (2005).Google Scholar
2. Seol, J., Lee, S., Lee, J., Nam, H., Kim, K., Sol. En. Mat.& Sol. Cel. 75, 155162 (2003).Google Scholar
3. Katagiri, H., Thin Solid Films 480-481, 426432 (2005).Google Scholar
4. Jimbo, K., Kimura, R., Kamimura, T., Yamada, S., Maw, W., Araki, H., Oishi, K., Katagiri, H., Thin Solid Films, (2007) (in press).Google Scholar
5. Johnson, J.B., Jones, H., Latham, B.S., Parker, J.D., Engelken, R.D., Barber, C., Semicond. Sci. Technol. 14, 501507 (1999).Google Scholar
6. Yuan, H.J., Xie, S.S., Liu, D.F., Yan, X.Q., Zhou, Z.P., Ci, L.J., Wang, J.X., Gao, Y., Song, L. Liu, L.F., Zhou, W.Y., Wang, G., J. Cryst. Growth 258, 225231 (2003).Google Scholar
7. Klenk, R., Klaer, J., Scheer, R., Ch, M., , Lux-Steiner, Luck, I., Meyer, N., Rühle, U., Thin Solid Films 480-481, 509514 (2005).Google Scholar
8. Klopmann, Ch.von, Djordjevic, J., Scheer, R., J. Cryst. Growth 289, 113120 (2006).Google Scholar
9. Pfisterer, F., PhD Thesis, University of Stuttgart (1987), p.78 ff.Google Scholar
10. Will, G., Hinze, E., Abdel, R., Europ. J. Miner. 14, 591598 (2002).Google Scholar
11. Friedlmeier, T.A. Magorian, PhD Thesis, University of Stuttgart (2001), p. 1415.Google Scholar
12. McMaster, W.H., Grande, N. Kerr del, Mallett, J.H., Hubbell, J.H., Lawrence Livermore National Laboratory Report UCRL-50174, Sec. II, Rev. 1, Lawrence Livermore National Laboratory, Livermore CA, 1969-1970.Google Scholar
13. Berger, R., Bucur, R.V., Sol. Stat. Ionics 89, 269278 (1996).Google Scholar
14. Gartsman, K., Chernyak, L., Lyahovitskaya, V., Cahen, D., Didik, V., Kozlovsky, V., Malkovich, R., Skoryatina, E., Usacheva, V., J. Appl. Phys. 82 (9), 42824285 (1997).Google Scholar
15. Wiflmann, S., Becker, K.D., Sol. State Ionics 101-103, 539545 (1997).Google Scholar
16. Olekseyuk, I.D., Dudchak, I.V., Piskach, L.V., J. All. Comp. 368, 135143 (2004).Google Scholar
17. Klenk, R., Walter, T., Schock, H.W., Cahen, D., Adv. Mater. 5, 114119 (1993).Google Scholar
18. Hergert, F., Jost, S., Hock, R., Purwins, M., Palm, J., Phys. St. Sol.(a) 203, 26152623 (2006).Google Scholar
19. Hergert, F., Hock, R., Thin Solid Films, (2007) (in press).Google Scholar