Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T05:56:32.546Z Has data issue: false hasContentIssue false

Fluorescence Correlation Spectroscopy Study of TAMRA Diffusion in Poly(vinyl-alcohol) and Ficoll70 Solutions

Published online by Cambridge University Press:  26 February 2011

Ariel Michelman-Ribeiro
Affiliation:
michelma@mail.nih.gov, National Institutes of Health, Lab. of Integrative and Medical Biophysics, United States
Ferenc Horkay
Affiliation:
horkay@helix.nih.gov, National Institutes of Health, Lab. of Integrative and Medical Biophysics, United States
Ralph Nossal
Affiliation:
rjn@helix.nih.gov, National Institutes of Health, Lab. of Integrative and Medical Biophysics, United States
Hacene Boukari
Affiliation:
boukarih@mail.nih.gov, National Institutes of Health, Lab. of Integrative and Medical Biophysics, United States
Get access

Abstract

We compare fluorescence correlation spectroscopy (FCS) measurements of the fluorescent nanoparticle, TAMRA, diffusing in non-fluorescent -hence invisible- poly(vinyl-alcohol) (PVA) or Ficoll70 solutions as a function of the polymer concentration, c. We determine changes of the translational diffusion coefficient of TAMRA and fit the data with the universal scaling law (D ∼ exp[−α(c/c*)ν], to extract information about solvent quality. For PVA, we find ν = 0.74, suggesting that water in this case acts as a good solvent, whereas ν = 1.02 in Ficoll70 solutions, indicating theta-like behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Webb, W. W., Appl. Optics 40, 3969 (2001)Google Scholar
[2] Aragon, S. R. and Pecora, R., J. Chem. Phys. 64, 1791 (1976).Google Scholar
[3] Rigler, R. and Elson, E. S., Fluorescence Correlation Spectroscopy: Theory and Applications”, Springer Series in Chemical Physics, Springer–Verlag; New York 2001.Google Scholar
[4] Chen, Y., Müuller, J. D., Berland, K. M., Gratton, E., Methods 19, 234 (1999).Google Scholar
[5] Boukari, H., Nossal, R., and Sackett, D. L., Biochemistry 42, 1292 (2003).Google Scholar
[6] Michelman–Ribeiro, A., Boukari, H., Nossal, R., and Horkay, F., Macromolecules 37, 10212 (2004).Google Scholar
[7] Busch, N. A., Kim, T., and Bloomfield, V. A., Macromolecules 33, 5932 (2000).Google Scholar
[8] Elcock, A. H., PNAS 100, 2340 (2003).Google Scholar
[9] Hoffman, A.S., Advanced Drug Delivery Review 43, 3 (2002).Google Scholar
[10] Nuttelman, C. R., Henry, S. M., Anseth, K. S., Biomaterials 23, 3617 (2002).Google Scholar
[11] Schmedlen, R. H., Masters, K. S., West, J. L., Biomaterials 23, 4325 (2002).Google Scholar
[12] Horkay, F., Hecht, A. M., Geissler, E., Macromolecules 1994, 27, 1795.Google Scholar
[13] de Gennes, P. G., Scaling Concepts in Polymer Physics; Cornell University Press; Ithaca, NY, 1979.Google Scholar
[14] Langevin, D. and Rondelez, F., Polymer 19, 875 (1978).Google Scholar
[15] Phillies, G. D. J., J. Non–Cryst. Solids 131133, 612 (1991).Google Scholar
[16] Stojikovic, K. S., Berezhkovkii, A. M., Zitserman, V. Y., Bezrukov, S. M., J. Chem. Phys. 119, 6973 (2003).Google Scholar