Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-66nw2 Total loading time: 0.284 Render date: 2021-12-08T08:00:30.601Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

First-principles Investigations of Point Defect Behavior and Elastic Properties of TiNi Based Alloys

Published online by Cambridge University Press:  01 February 2011

Jian-min Lu
Affiliation:
jmlv@imr.ac.cn, Institute of Metal Research CAS, Shenyang, China
Qing-miao Hu
Affiliation:
qmhu@imr.ac.cn, Institute of Metal Research CAS, Shenyang, China
Rui Yang
Affiliation:
ryang@imr.ac.cn, Institute of Metal Research CAS, China
Get access

Abstract

First-principles calculations by the use of a plane-wave pseudopotential method are performed to investigate intrinsic point defect behavior in TiNi. The results show that TiNi is an antisite type intermetallic compound. The calculated interaction energies between the point defects demonstrate that Ti antisites are attractive to each other whereas Ni antisites are mutually repulsive. The attraction between Ti antisites indicates that excess Ti in TiNi may agglomerate so that a Ti-rich phase can easily precipitate. The repulsion between Ni antisites implies that the excess Ni is of certain solubility in TiNi. This result explains well the asymmetric feature of TiNi field on the binary phase diagram. In order to understand the correlation between the composition dependent elastic modulus and martensitic transformation (MT) temperature, the elastic moduli critical to MT, i.e., c′ and c 44, are calculated as a function of the composition of the off-stoichiometric TiNi and a series of ternary TiNi-X alloys, by the use of exact muffin-tin orbital method in combination with coherent potential approximation. It turns out that, generally speaking, the early transition metal (TM) alloying elements in the periodic table increase c′ but decrease c 44; the middle ones increase both c′ and c 44, whereas the late ones decrease c′ but increase c 44. An examination of the theoretical composition dependent elastic modulus and the experimental MT temperature shows that the MT temperature is more sensitive to the variation of c 44 than to that of c′.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Otsuka, K. and Ren, X., Prog. Mater. Sci. 50, 511 (2005).CrossRefGoogle Scholar
2. Kartha, S., Krumhansl, J. A., Sethna, J. P. and Wickham, L. K., Phys. Rev. B 52, 803 (1995).CrossRefGoogle Scholar
3. Ren, X. and Otsuka, K., Scripta Metall. 38, 1669 (1998).CrossRefGoogle Scholar
4. Ren, X., Taniwaki, K., Otsuka, K., et al. Philos. Mag. A 79, 31 (1999).CrossRefGoogle Scholar
5. Ren, X. and Otsuka, K., Mater. Sci. Forum 327-328, 429 (2000).Google Scholar
6. Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
7. Mayer, J., Elsasser, C. and Fahnle, M., Phys. Status Solidi B 191, 283 (1995).CrossRefGoogle Scholar
8. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulus, J. D., Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
9. Segall, M. D., Lindan, P. L. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J. and Payne, M. C., J. Phys.: Condens. Matter 14, 2717 (2002).Google Scholar
10. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
11. Vitos, L., Abrikosov, I. A. and Johansson, B., Phys. Rev. Lett. 87, 156401 (2001).CrossRefGoogle Scholar
12. Soven, S., Phys. Rev. 156, 809 (1967).CrossRefGoogle Scholar
13. Györffy, B. L., Phys. Rev. B 5, 2382 (1972).CrossRefGoogle Scholar
14. Ye, Y. Y., Chan, C. T. and Ho, K. M., Phys. Rev. B 56, 3678 (1997).CrossRefGoogle Scholar
15. Huang, X., Bungaro, C., Godlevsky, V. and Rabe, K. M., Phys. Rev. B 65, 014108 (2001).CrossRefGoogle Scholar
16. Mercier, O., Melton, K. N., Gremaud, G. and Hagi, J., J. Appl. Phys. 51, 1833 (1980).CrossRefGoogle Scholar
17. Khachin, V. N., Muslov, S. A., Pushin, V. G. and Chumlyakov, Y. I., Sov. Phys. Dokl. 32, 606 (1980).Google Scholar
18. Brill, T. M., Mittlebach, S., Assmus, W., Mullner, M. and Luthi, B., J. Phys.: Condens. Matter 3, 9621 (1991).Google Scholar
19. Hanlon, J. E., Butler, S. R. and Wasilewski, R. J., Trans. Metall. Soc. AIME 239, 1323 (1967).Google Scholar
20. Wasilewski, R. J., Butler, S. R., Hanlon, J. E. and Worden, D., Metall. Trans. 2, 229 (1971).CrossRefGoogle Scholar
21. Lu, J. M., Hu, Q. M., Wang, L., Li, Y. J., Xu, D. S. and Yang, R., Phys. Rev. B 75, 094108 (2007).CrossRefGoogle Scholar
22. Lu, J. M., Hu, Q. M. and Yang, R., Acta Mater. 56, 4913 (2008).CrossRefGoogle Scholar
23. Hu, Q. M., Yang, R., Lu, J. M., Wang, L., Johansson, B. and Vitos, L., Phys. Rev. B 76, 224201 (2007).CrossRefGoogle Scholar
24. Echelmeyer, K. H., Script Metall. 10, 667 (1976).CrossRefGoogle Scholar
25. Edmonds, K. R. and Hwang, C. M., Script Metall. 20, 733 (1986).CrossRefGoogle Scholar
26. Xu, H. B., Jiang, C. B., Gong, S. K. and Feng, G., Mater. Sci. Eng. A 281, 234 (2000).CrossRefGoogle Scholar
27. Hosoda, H., Hanada, S., Inoue, K., Fukui, T., Mishima, Y. and Suzuki, T., Intermetallics 6, 291 (1998).CrossRefGoogle Scholar
28. Lin, H. C., Lin, K. M., Chang, S. K. and Lin, C. S., J. Alloy Comp. 284, 213 (1999).CrossRefGoogle Scholar
29. Nam, T. H., Saburi, T. and Shimizu, K., Mater. Trans. JIM 31, 959 (1990).CrossRefGoogle Scholar
30. Kornilov, I. I., Kachur, Y. V. and Belousov, O. K., Fizika. Metall. 32, 420 (1971).Google Scholar
31. Mayazaki, S., Otsuka, K. and Suzuki, Y., Scr. Metall. 15, 287 (1981).CrossRefGoogle Scholar
32. Melton, K.N. and Mercier, O., Acta Metall. 29, 393 (1981).CrossRefGoogle Scholar
33. Mayazaki, S. and Otsuka, K., Metall. Trans. 17, 53 (1986).CrossRefGoogle Scholar
34. Nishida, M., Wayman, C.M. and Honma, T., Metall. Trans. A 17, 1505 (1986).CrossRefGoogle Scholar
35. Wu, S. K. and Wayman, C. M., Script Metall. 21, 83 (1987); Metallography 20, 359 (1987).CrossRefGoogle Scholar
36. Honsoda, H., Tsuji, M., Mimura, M., Takahashi, Y., Wakashima, K. and Ymabe-Mitarai, Y., Mat. Res. Soc. Symp. Proc. 753, BB5.51.1 (2003).Google Scholar
37. Feng, Z. W., Gao, B. D., Wang, J. B., Qian, D. F. and Liu, Y. X., Mater. Sci. Forum 394-395, 365 (2002).CrossRefGoogle Scholar
38. Hsieh, S. F. and Wu, S. K., Mater. Charact. 151, 41 (1998).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

First-principles Investigations of Point Defect Behavior and Elastic Properties of TiNi Based Alloys
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

First-principles Investigations of Point Defect Behavior and Elastic Properties of TiNi Based Alloys
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

First-principles Investigations of Point Defect Behavior and Elastic Properties of TiNi Based Alloys
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *