Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pxp6n Total loading time: 0.22 Render date: 2021-06-20T17:37:22.421Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Field Emitter Cathodes and Electric Propulsion Systems

Published online by Cambridge University Press:  14 March 2011

Colleen M. Marrese
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91100, U.S.A
James E. Polk
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91100, U.S.A
Juergen Mueller
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91100, U.S.A
Get access

Abstract

Replacing hollow and filament cathodes with field emitter (FE) cathodes could significantly improve the scalability, power, and performance of some meso- and microscale Electric Propulsion (EP) systems. The propulsion system environments and requirements and the challenges in integrating these technologies are discussed to justify the recommended cathode configurations. Required cathode technologies include low work function coatings on Si or Mo Field Emitter Array (FEA) cathodes with arc protection and electrostatic ion filters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Mueller, J., AIAA-97-3058 (1997).CrossRefGoogle Scholar
2 Schneider, P., J. Chem. Phys. 28 (4) (1958).Google Scholar
3 Genovese, A., Marcuccio, S., Petracchi, P., Andrenucci, M., AIAA-96-2725, 1996.Google Scholar
4 Tajmar, T., Ph. D. Dissertation, Vienna University of Technology (TU WEIN), Austria, 1999.Google Scholar
5 Domonkos, M. T., Ph. D. Dissertation, University of Michigan (1999).Google Scholar
6 Genovese, A., Marcuccio, S., Petracchi, P., Andrenucci, M., AIAA-96-2725 (1996).Google Scholar
7 Sohl, G., Fosnight, V.V., Goldner, S.J., Speiser, R. C., AIAA 6781 (1967).Google Scholar
8 Gorshkov, O., Muravlev, V. A., Grigoryan, V. G., Minakov, V.I, AIAA 992855 (1999).Google Scholar
9 Khayms, V., Martinez-Sanchez, M., AIAA Progress Series-Micropropulsion, (1999) in press.Google Scholar
10 Belikov, M. B., Gorshkov, O. A., Rizakhanov, R. N, Shagayda, A. A., Khartov, S. A., AIAA-99-2571 (1999).Google Scholar
11 Hruby, V., Monheiser, J., Pote, B., Rostler, P., Kolencik, AIAA-99-3534, (1999).Google Scholar
12 Taylor, G., Proceed. Royal Society, A 280, (1964).Google Scholar
13 Fehringer, M., , Rudenauer, and Steiger, W., AIAA-97-3057 (1997).Google Scholar
14 Petagna, C., von Rhoden, H., Bartoli, C., Valentian, D., IEPC 88-127 (1988).Google Scholar
15 Perel, J., Bates, T., Mahoney, J., Moore, R. D., Yihiku, A. Y., AIAA 95-2810 (1995).Google Scholar
16 Marrese, C. M., Polk, J. E., Jensen, K. L., Gallimore, A. D., Spindt, C., Fink, R. L., Tolt, Z. L., Palmer, W. D., AIAA Progress Series-Micropropulsion, (1999) in press.Google Scholar
17 Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazmuta, Y., Miyagawa, S., Morita, K., Shimizu, R., Tawara, H., Atomic Data and Nuclear Data Tables 31 (1984).CrossRefGoogle Scholar
18 Jensen, K. L, Physics of Plasmas 6 (1999).Google Scholar
19 Mackie, W. A., Morrissey, J. L., Hindrichs, C. H., Davis, P. R., J. Vac. Sci. Technol. A 10(4) (1992).CrossRefGoogle Scholar
20 Mackie, W. A., Hartman, R. L., Anderson, M. A., Davis, P. R., J. Vac. Sci. Technol. B 12(2) (1994).CrossRefGoogle Scholar
21 Xie, T., Mackie, W. A., and Davis, P. R., J. Vac. Sci. Technol. B 14(3) (1996).Google Scholar
22 Lee, S., Lee, S., Lee, S., Jeon, D., Lee, K. R., J. Vac. Sci. Technol. B 15(2) (1997).Google Scholar
23 Jung, J. H., Ju, B. K., Lee, Y. H., Jang, J., Oh, M. H., J. Vac. Sci. Technol. B 17(2) (1999).Google Scholar
24 Takemura, H., Tomihari, Y., Furutake, N., Matsuno, F., Yoshiki, M., Takada, N., Okamoto, A., and Miyano, S., Tech. Digest IEEE-IEDM, 709 (1997).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Field Emitter Cathodes and Electric Propulsion Systems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Field Emitter Cathodes and Electric Propulsion Systems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Field Emitter Cathodes and Electric Propulsion Systems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *