Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-7j4dq Total loading time: 0.325 Render date: 2022-09-30T14:11:57.368Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Fiber-Matrix Interfaces in Ceramic Composites

Published online by Cambridge University Press:  10 February 2011

T. M. Besmann
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6063, tmb@ornl.gov
D. P. Stinton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6063, tmb@ornl.gov
E. R. Kupp
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6063, tmb@ornl.gov
S. Shanmugham
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37922
P. K. Liaw
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37922
Get access

Abstract

The mechanical properties of ceramic matrix composites (CMCs) are governed by the relationships between the matrix, the interface material, and the fibers. In non-oxide matrix systems the use of compliant pyrolytic carbon or BN have been demonstrated to be effective interface materials, allowing for absorption of mismatch stresses between fiber and matrix and offering a poorly bonded interface for crack deflection. The resulting materials have demonstrated remarkable strain/damage tolerance together with high strength. Carbon or BN, however, suffer from oxidative loss in many service environments, and thus there is a major search for oxidation resistant alternatives. This paper will review the issues related to developing a stable and effective interface material for non-oxide matrix CMCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Warren, R., Ceramic Matrix Composites (Chapman and Hall, London, 1992), pp. 111 Google Scholar
2. Karnitz, M. A., Craig, D. F., and Richlen, S. L., Am. Ceram. Soc. Bull. 70 (3), 430435 (1991).Google Scholar
3. Chawla, K.K., Ceramic Matrix Composites. (Chapman and Hall, London, 1993).Google Scholar
4. Prewo, K. M. and Brennan, J. J., J. Mat. Sci. 17, 23712383 (1982).Google Scholar
5. Marshall, D. B. and Evans, A. G., J. Am. Ceram. Soc. 68 (5), 225231 (1985).CrossRefGoogle Scholar
6. McMurtry, C.H., Boecker, W. D. G., Seshardri, S. G., and Fanghi, J. S., Am. Ceram. Soc. Bull. 66 (2), 325329 (1987).Google Scholar
7. Becher, P. F. and Wei, G. C., Mater. Sci. Eng. A107, 257261 (1989).CrossRefGoogle Scholar
8. Kodama, H., Suzuki, T., Sakamoto, H., and Miyoshi, T., J. Am. Ceram. Soc. 73 (3), 678683 (1990).CrossRefGoogle Scholar
9. Besmann, T. M., Sheldon, B. W., Lowden, R. A., and Stinton, D. P., Science 253, 11041109 (1991).CrossRefGoogle Scholar
10. Brennan, J. J., J. de Physique, Colloque C5 Suppl. 10 (49), 791809 (1988).Google Scholar
11. Naslain, R., Dugne, O., Guette, A., Sevely, J., Robin-Brosse, C., Rocher, J. P., and Cotteret, J., J. Am. Ceram. Soc. 73 (3), 678: 683 (1991).Google Scholar
12. Lowden, R. A., Ceram. Trans. 19, 619630 (1991).Google Scholar
13. Kerans, R. J., Scripta Metall, and Mater. 32 (4), 505509 (1995).CrossRefGoogle Scholar
14. Kerans, R. J., Scripta Metall, and Mater. 31 (8), 10791084 (1994).CrossRefGoogle Scholar
15. Kerans, R. J., J. Am. Ceram. Soc. 79 (6), 16641668 (1996).CrossRefGoogle Scholar
16. Singh, R. N. and Reddy, S. K., J. Am. Ceram. Soc. 79 (1), 137147 (1996).CrossRefGoogle Scholar
17. Donald, I. W. and McMillan, P. W., J. Mater. Sci. 11, 949972 (1976).CrossRefGoogle Scholar
18. Evans, A. G. and Marshall, D. B., Acta Metall. 37, 25672583 (1989).CrossRefGoogle Scholar
19. Naslain, R. in High Temperature Ceramic Matrix Composites II: Manufacturing and Materials Development, edited by Evans, A. G. and Naslain, R. (Ceram. Trans., Vol. 58, American Ceramic Society, Westerville, Ohio, 1995) pp. 2340.Google Scholar
20. Hsueh, C.-H., Becher, P. F., and Angelini, P., J. Am. Ceram. Soc. 71 (11), 929933 (1988).CrossRefGoogle Scholar
21. Karandikar, P. and Chou, T.-W. in Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, edited by Loehman, R. L., El-Rahaiby, S. K., and Wachtman, J. B. (American Ceramic Society, Westerville, Ohio, 1995) pp. 355429.Google Scholar
22. Lin, H.-T., Becher, P. F., and Tortorelli, P. F. in Ceramic Matrix Composites - Advanced High-Temperature Structural Materials, edited by Lowden, R. A., Ferber, M. K., Hellmann, J. R., Chawla, K. K., and DiPietro, S. G. (Mater. Res. Soc. 365, Pittsburgh, PA 1995) pp. 435440.Google Scholar
23. Lowden, R. A., Schwarz, O. J., and More, K. L., Ceram. Eng. Sci. Proc. 14 (7–8), 375384 (1993).CrossRefGoogle Scholar
24. Walukas, D. M., M.S. thesis, The University of Tennessee, 1993.Google Scholar
25. Shanmugham, S., Stinton, D. P., Rebillat, F., Bleier, A., Besmann, T. M., Lara-Curzio, E., and Liaw, P. K., Ceram. Eng. Sci. Proc. 16 (4), 389399 (1995).CrossRefGoogle Scholar
26. Mah, T., Hecht, N. L., McCullum, D. E., Hoenigman, J. R., Kim, H. M., Katz, A. P., and Lipsitt, H. A., J. Mater. Sci. 19, 11911201 (1984).CrossRefGoogle Scholar
27. Simon, G. and Bunsell, A. R., J. Mater. Sci. 19, 36583670 (1984).CrossRefGoogle Scholar
28. Frety, N., Molins, R., and Boussuge, M., J. Mater. Sci. 27, 50845090 (1992).CrossRefGoogle Scholar
29. Lowden, R. A., Schwarz, O. J., and Stinton, D. P. in Proceedings of the Eighth Annual Conference on Fossil Energy Materials, edited by Judkins, R. R. (CONF-9405143, ORNL/FMP-94/1, NTIS, Springfield, Virginia 1994) pp. 105116.Google Scholar
30. Besmann, T. M., Shanmugham, S., Kupp, E. R., and Stinton, D. P. in Proceedings of the American Society for Composites - Eleventh Technical Conference, edited by Johnson, W. S. (Technomic Publishing Co., Lancaster, PA, 1996) pp. 371380.Google Scholar
31. Gulden, T. D., Hazlebeck, D. A., Norton, K. P., and Strecken, H. H., Ceram. Eng. Sci. Proc. 11 (9–10), 15391553 (1990).CrossRefGoogle Scholar
32. Hay, R. S., Petry, M. D., Keller, K. A., Cinibulk, M. K., and Welch, J. R. in Ceramic Matrix Composites - Advanced High-Temperature Structural Materials, edited by Lowden, R. A., Ferber, M. K., Hellmann, J. R., Chawla, K. K., and DiPietro, S. G. (Mater. Res. Soc. 365, Pittsburgh, PA 1995) pp. 377382.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fiber-Matrix Interfaces in Ceramic Composites
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fiber-Matrix Interfaces in Ceramic Composites
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fiber-Matrix Interfaces in Ceramic Composites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *