Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dwt4q Total loading time: 0.274 Render date: 2021-06-12T15:54:42.420Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects

Published online by Cambridge University Press:  26 February 2011

Kai Liu
Affiliation:
kailiu@ucdavis.edu, University of California - Davis, Physics Department, One Shields Avenue, Davis, CA, 95616, United States, 530-752-4109, 530-752-4717
Sung-Jin Cho
Affiliation:
sjcho@ucdavis.edu, University of California - Davis, Chemistry Department, United States
Susan M. Kauzlarich
Affiliation:
smkauzlarich@ucdavis.edu, University of California - Davis, Chemistry Department, United States
J. C. Idrobo
Affiliation:
jidrob1@uic.edu, University of California - Davis, Physics Department, United States
Joseph E. Davies
Affiliation:
Davies@physics.ucdavis.edu, University of California - Davis, Physics Department, United States
Justin Olamit
Affiliation:
Olamit@physics.ucdavis.edu, University of California - Davis, Physics Department, United States
N. D. Browning
Affiliation:
Nbrowning@ucdavis.edu, University of California - Davis, Department of Chemical Engineering and Materials Science, United States
Ahmed M. Shahin
Affiliation:
ashahin@ucalgary.ca, University of Missouri - Rolla, Chemistry Department, United States
Gary J. Long
Affiliation:
glong@umr.edu, University of Missouri - Rolla, Chemistry Department, United States
Fernande Grandjean
Affiliation:
fgrandjean@ulg.ac.be, University of Liëge, Physics Department, Belgium
Get access

Abstract

We report the chemical synthesis of Fe-core/Au-shell nanoparticles (Fe/Au) by a reverse micelle method, and the investigation of their growth mechanisms and oxidation-resistant characteristics. The core-shell structure and the presence of the Fe and Au phases have been confirmed by transmission electron microscopy, energy dispersive spectroscopy, x-ray diffraction, Mössbauer spectroscopy, and inductively coupled plasma techniques. Additionally, atomic-resolution Z-contrast imaging and electron energy loss spectroscopy in a scanning transmission electron microscope have been used to study details of the growth processes. The Au-shells grow by nucleating on the Fe-core surfaces before coalescing. First-order reversal curves, along with the major hysteresis loops of the Fe/Au nanoparticles have been measured as a function of time in order to investigate the evolution of their magnetic properties. The magnetic moments of such nanoparticles, in the loose powder form, decrease over time due to oxidation. The less than ideal oxidation-resistance of the Au shell may have been caused by the rough Au surfaces. In a small fraction of the particles, off-centered Fe cores have been observed, which are more susceptible to oxidation. However, in the pressed pellet form, electrical transport measurements show that the particles are fairly stable, as the resistance and magnetoresistance of the pellet do not change appreciably over time. Our results demonstrate the complexity involved in the synthesis and properties of these heterostructured nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Awschalom, D. D. and von Molnár, S., in Nanotechnology (Chapter 12), edited by Timp, G. (Springer-Verlag, New York, 1998).Google Scholar
2 Ounadjela, K. and Stamps, R. L., in Handbook of Nanostructured Materials and Nanotechnology (Chapter 9), edited by Nalwa, H. S. (Academic Press, San Diego, 2000), Vol. 2.Google Scholar
3 Ross, C., An. Rev. Mater. Res. 31, 203 (2001).CrossRefGoogle Scholar
4 Martin, J. I., Nogues, J., Liu, K., Vicent, J. L., and Schuller, I. K., Magn, J.. Magn. Mater. 256, 449 (2003).CrossRefGoogle Scholar
5 Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., and Muhammed, M., Magn, J.. Magn. Mater. 225, 256 (2001).CrossRefGoogle Scholar
6 Niemeyer, C. M., Angewandte Chemie, Int. Ed. 40, 4128 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
7 Li, G. X. and Wang, S. X., IEEE Trans. Magn. 39, 3313 (2003).Google Scholar
8 Li, G. X., Wang, S. X., and Sun, S. H., IEEE Trans. Magn. 40, 3000 (2004).CrossRefGoogle Scholar
9 Bausch, A. R., Moller, W., and Sackmann, E., Biophys. J. 76, 573 (1999).CrossRefGoogle Scholar
10 Mornet, S., Vasseur, S., Grasset, F., and Duguet, E., J. Mater. Chem. 14, 2161 (2004).CrossRefGoogle Scholar
11 Gangopadhyay, P., Gallet, S., Franz, E., Persoons, A., and Verbiest, T., IEEE Trans. Magn. 41, 4194 (2005).CrossRefGoogle Scholar
12 Zahn, M., J. Nanopar. Res. 3, 73 (2001).CrossRefGoogle Scholar
13 O'Connor, C. J., Seip, C., Sangregorio, C., Carpenter, E., Li, S., Irvin, G., and John, V. T., Mole. Crys. Liq. Crys. Sci. Tech. A 335, 1135 (1999).Google Scholar
14 Wang, D., He, J., Rosenzweig, N., and Rosenzweig, Z., Nano Lett. 4, 409 (2004).CrossRefGoogle Scholar
15 Sun, S. and Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002).CrossRefGoogle Scholar
16 Kuhn, L. T., Bojesen, A., Timmermann, L., Nielsen, M. M., and Morup, S., J. Phys.: Cond. Mat. 14, 13551 (2002).Google Scholar
17 Sun, S. H., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G. X., J. Am. Chem. Soc. 126, 273 (2004).CrossRefGoogle Scholar
18 Puntes, V. F., Krishnan, K. M., and Alivisatos, A. P., Science 291, 2115 (2001).CrossRefGoogle Scholar
19 Park, S.-J., Kim, S., Lee, S., Khim, Z. G., Char, K., and Hyeon, T., J. Am. Chem. Soc. 122, 8581 (2000).CrossRefGoogle Scholar
20 Dumestre, F., Chaudret, B., Amiens, C., Renaud, P., and Fejes, P., Science 303, 821 (2004).CrossRefGoogle Scholar
21 Bai, J. and Wang, J.-P., Appl. Phys. Lett. 87, 152502 (2005).CrossRefGoogle Scholar
22 Carpenter, E. E., Sangregorio, C., and O'Connor, C. J., IEEE Trans. Magn. 35, 3496 (1999).CrossRefGoogle Scholar
23 Kinoshita, T., Seino, S., Okitsu, K., Nakayama, T., Nakagawa, T., and Yamamoto, T. A., J. Alloy. Comp. 359, 46 (2003).CrossRefGoogle Scholar
24 Ravel, B., Carpenter, E. E., and Harris, V. G., J. Appl. Phys. 91, 8195 (2002).CrossRefGoogle Scholar
25 Carpenter, E. E., J. Magn. Magn. Mater. 225, 17 (2001).CrossRefGoogle Scholar
26 O'Connor, C. J., Kolesnichenko, V., Carpenter, E., Sangregorio, C., Zhou, W., Kumbhar, A., Sims, J., and Agnoli, F., Synth. Met. 122, 547 (2001).CrossRefGoogle Scholar
27 Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E. E., and O'Connor, C. J., J. Solid St. Chem. 159, 26 (2001).CrossRefGoogle Scholar
28 Cho, S.-J., Kauzlarich, S. M., Olamit, J., Liu, K., Grandjean, F., Rebbouh, L., and Long, G. J., J. Appl. Phys. 95, 6804 (2004).CrossRefGoogle Scholar
29 Cho, S.-J., Idrobo, J.-C., Olamit, J., Liu, K., Browning, N. D., and Kauzlarich, S. M., Chem. Mater. 17, 3181 (2005).CrossRefGoogle Scholar
30 Cho, S.-J., Shahin, A. M., Long, G. J., Davies, J. E., Liu, K., Grandjean, F., and Kauzlarich, S. M., Chem. Mater., in press (2006); cond-mat/0512413.Google Scholar
31 Pham, T., Jackson, J. B., Halas, N. J., and Lee, T. R., Langmuir 18, 4915 (2002).CrossRefGoogle Scholar
32 Egerton, R. F., Electron Energy-Loss Spectroscopy in The Electron Microscope, 1986).CrossRefGoogle Scholar
33 Liu, K., Zhao, L., Klavins, P., Osterloh, F. E., and Hiramatsu, H., Appl, J.. Phys. 93, 7951 (2003).Google Scholar
34 Pike, C. R., Roberts, A., and Verosub, K. L., J. Appl. Phys 85, 6660 (1999).CrossRefGoogle Scholar
35 Katzgraber, H. G., Pázmándi, F., Pike, C. R., Liu, K., Scalettar, R. T., Verosub, K. L., and Zimányi, G. T., Phys. Rev. Lett. 89, 257202 (2002).CrossRefGoogle Scholar
36 Davies, J. E., Hellwig, O., Fullerton, E. E., Denbeaux, G., Kortright, J. B., and Liu, K., Phys. Rev. B 70, 224434 (2004).CrossRefGoogle Scholar
37 Davies, J. E., Hellwig, O., Fullerton, E. E., Jiang, J. S., Bader, S. D., Zimanyi, G. T., and Liu, K., Appl. Phys. Lett. 86, 262503 (2005).CrossRefGoogle Scholar
38 Davies, J. E., Wu, J., Leighton, C., and Liu, K., Phys. Rev. B 72, 134419 (2005).CrossRefGoogle Scholar
39 Cullity, B. D., Intorduction to magnetic materials (Addison-Wesley Pub. Co., Reading, Mass., 1972).Google Scholar
40 Liu, K. and Chien, C. L., IEEE Trans. Magn. 34, 1021 (1998).CrossRefGoogle Scholar
41 Long, G. J., Hautot, D., Pankhurst, Q. A., Vandormael, D., Grandjean, F., Gaspard, J. P., Briois, V., Hyeon, T., and Suslick, K. S., Phys. Rev. B 57, 10716 (1998).CrossRefGoogle Scholar
42 Novakova, A. A., Lanchinskaya, V. Y., Volkov, A. V., Gendler, T. S., Kiseleva, T. Y., Moskvina, M. A., and Zezin, S. B., J. Magn. Magn. Mater. 258–259, 354 (2003).CrossRefGoogle Scholar
43 Glavee, G. N., Klabunde, K. J., Sorensen, C. M., and Hadjipanayis, G. C., Inorg. Chem. 34, 28 (1995).CrossRefGoogle Scholar
44 Duxin, N., Stephan, O., Petit, C., Bonville, P., Colliex, C., and Pileni, M. P., Chem. Mater. 9, 2096 (1997).CrossRefGoogle Scholar
45 Linderoth, S. and Mørup, S., J. Appl. Phys. 69, 5256 (1991).CrossRefGoogle Scholar
46 Savini, L., Bonetti, E., Del Bianco, L., Pasquini, L., Signorini, L., Coisson, M., and Selvaggini, V., J. Magn. Magn. Mater. 262, 56 (2003).CrossRefGoogle Scholar
47 Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *