Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dkhcg Total loading time: 0.496 Render date: 2021-06-13T12:51:06.017Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Feasibility studies of using PED deposited Sn-doped In2O3 Films for Organic Electronic Devices

Published online by Cambridge University Press:  18 July 2011

Sushma Kotru
Affiliation:
Department of Electrical and Computer Engineering and MINT, University of Alabama, Tuscaloosa, AL 35487
Rachel M. Frazier
Affiliation:
Alabama Innovation and Mentoring of Entrepreneurs, University of Alabama, Tuscaloosa, AL 35487
Mengwei Chen
Affiliation:
Department of Electrical and Computer Engineering and MINT, University of Alabama, Tuscaloosa, AL 35487
Harshan V. Nampoori
Affiliation:
Department of Electrical and Computer Engineering and MINT, University of Alabama, Tuscaloosa, AL 35487
Daniel T. Daly
Affiliation:
Alabama Innovation and Mentoring of Entrepreneurs, University of Alabama, Tuscaloosa, AL 35487
Get access

Abstract

In this work, pulsed electron deposition was used to prepare thin films of ITO on plastic substrates. These films were used as electrodes for organic photovoltaic devices to determine the feasibility of using PED deposited ITO as electrodes. ITO films deposited on plastic showed optical transmission values as high as 85% for films deposited at high pressures. Films deposited on plastic substrates were further used to prepare a test organic solar cell, with ITO as the bottom electrode. The device performance was seen to depend on the quality of the ITO electrode, and the ITO film deposited at the lowest oxygen pressure was found to be the best electrode for the organic photovoltaic device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Maruyama, T. and Fukui, K., Thin Solid Films 203, (1991) 297302.CrossRefGoogle Scholar
[2] Yang, C.H., Lee, S.C., Lin, T.C., and Chen, S.C., Thin Solid Films 516, (2008) 19841991.CrossRefGoogle Scholar
[3] Sato, Y., Taketomo, M., Ito, N., Miyamura, A., and Shigesato, Y., Thin Solid Films 516, (2008) 45984602.CrossRefGoogle Scholar
[4] Bender, M., Seelig, W., Daube, C., Frankenberger, H., Ocker, B., and Stollenwerk, J., Thin Solid Films 326, (1998) 7277.CrossRefGoogle Scholar
[5] Chiou, B. S., Wu, W. F., Hsieh, S. T., Semicond. Sci. Technol. 9(6), (1994) 1242.Google Scholar
[6] Tuna, O., Selamat, Y, Aygun, G. and Ozyuze, L., Journal of Physics D: Applied Physics 43, (2010) 055402.CrossRefGoogle Scholar
[7] Nath, P., Bunshah, R. F., Basol, B. M., and Staffsud, O. M., Thin Solid Films 72, 4 (1980) 463468.CrossRefGoogle Scholar
[8] Fallah, H. R., Ghasemi, M., Hassanzadeh, A., and Steki, H., Materials Research Bulletin 42, (2007) 487496.CrossRefGoogle Scholar
[9] Rozati, S. M. and Ganj, T., Renewable Energy 29, (2004) 16711676.CrossRefGoogle Scholar
[10] Dekkers, J. M., Rijnders, G., and Blank, D. H. A., Applied Physics Letters 88, (2006) 151908.CrossRefGoogle Scholar
[11] Kim, H., Gilmore, C. M., Pique, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B., Journal of Applied Physics 86, (1999) 64516461.CrossRefGoogle Scholar
[12] Viespe, C., Nicolae, I., Sima, C., Grigoriu, C., and Medianu, R., Thin Solid Films 515, (2007) 87718775.CrossRefGoogle Scholar
[13] Pammi, S. V. N., Chanda, A., Seong, N.-J., and Yoon, S.-G., Chemical Physics Letters 490,(2010) 234237.CrossRefGoogle Scholar
[14] Nampoori, H. V., Rincon, V., Chen, M., and Kotru, S., Jour Vacuum Sci Tech A 671674,(2004) 14831485.Google Scholar
[15] Kotru, Sushma, Chen, Mengwei, and Nampoori, Harshan V., Frazier, Rachel M., , Thin solid Films, communicated, 2011.Google Scholar
[16] Du, W., Zong, F., Ma, H., Ma, J., Zhang, M., Feng, X., Li, H., Zhang, Z., and Zhao, P., Crystal Research and Technology 41, (2006) 889892.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Feasibility studies of using PED deposited Sn-doped In2O3 Films for Organic Electronic Devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Feasibility studies of using PED deposited Sn-doped In2O3 Films for Organic Electronic Devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Feasibility studies of using PED deposited Sn-doped In2O3 Films for Organic Electronic Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *