Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-fnprw Total loading time: 0.259 Render date: 2022-08-14T04:37:46.505Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Fabrication and Properties of Epitaxial Lithium Niobate Thin Films by Combustion Chemical Vapor Deposition (CCVD)

Published online by Cambridge University Press:  17 March 2011

Yong Dong Jiang
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Jake McGee
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Todd A. Polley
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Robert E. Schwerzel
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Andrew T. Hunt
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Get access

Abstract

Lithium niobate has a wide variety of applications because of its excellent ferroelectric, piezoelectric and electrooptic properties. In this study, epitaxial lithium niobate thin films were deposited on c-sapphire (α-Al2O3) by the low-cost, open-atmosphere Combustion Chemical Vapor Deposition (CCVD) technique developed by MicroCoating Technologies, Inc. It was found that deposition temperature plays a critical role in determining the growth behavior and quality of the lithium niobate thin films. XRD measurements show that the lithium niobate films are epitaxial with two in-plane orientations (twin structure). A surface roughness (root mean square) of about 4 nm was obtained from the deposited film (about 200 nm thick), as measured by optical profilometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Callejo, D., Manotas, S., Serrano, M. D., Bermudez, V., Agullo-Rueda, F., and Dieguez, E., J. Crystal Growth, 226, 488 (2001)CrossRefGoogle Scholar
2. Kakehi, Y., Okamoto, A., Sakurai, Y., Nishikawa, Y., Yotsuya, T., and Ogawa, S., Appl. Sur. Sci., 169–170, 560 (2001)CrossRefGoogle Scholar
3. Xue, D., Betzler, K., Hesse, H., and Lammers, D., J. Phys. Chem. Solids, 62, 973 (2001)CrossRefGoogle Scholar
4. Bouquet, V., Bernardi, M. I. B., Zanetti, S. M., Leite, E. R., and Longo, E., J. Mater. Res., 15(1), 2446 (2000)CrossRefGoogle Scholar
5. Lee, S. H., Noh, T. W., and Lee, J. H., Appl. Phys. Lett., 68(4), 472 (1996)CrossRefGoogle Scholar
6. Veignant, F., Gandais, M., Aubert, P., and Garry, G., J. Crystal Growth, 196, 141 (1999)CrossRefGoogle Scholar
7. Cantelar, E., Nevado, R., Martin, G., Sanz-Garcia, J. A., Lifante, G., Cusso, F., Hernandez, M. J., and Pernas, P. L., J. Luminescence, 87–89, 1096 (2000)CrossRefGoogle Scholar
8. Lifante, G., Cantelar, E., Munoz, J. A., Nevado, R., Sanz-Garcia, J. A., and Cusso, F., Optical Mater., 13(1), 181 (1999)CrossRefGoogle Scholar
9. Dimos, D., and Mueller, C. H., Ann. Rev. Mater. Sci., 28, 397 (1998)CrossRefGoogle Scholar
10. Rauber, A., in “Current Topics in Materials Science”, vol. 1, edited by Kaldis, E., (North_Holland, Amsterdam, 1978), pp. 481 Google Scholar
11. Tomov, R. I., Kabadjova, T. K., Atanasov, P. A., Tonchev, S., Kaneva, M., Zherikhin, A., and Eason, R. W., Vacuum, 58, 396 (2000)CrossRefGoogle Scholar
12. Lu, Z., Hiskes, R, DiCarolis, S. A., Route, R. K., Feigelson, R. S., Leplingard, F., and Fouquet, J. E., J. Mater. Res., 9, 2258 (1994)CrossRefGoogle Scholar
13. Tan, S., Gilbert, T., Hung, C. Y., Schlesinger, T. E., and Migliuolo, M., J. Appl. Phys., 79, 3548 (1996)CrossRefGoogle Scholar
14. Park, S. K., Bae, S. C., Chio, B. J., Nam, G. H., Kim, Y. J., Kim, K. W., Jpn. J. Appl. Phys., 39, 1303 (2000)CrossRefGoogle Scholar
15. Martin, M. J., Alfonso, J. E., Mendiola, J., Zaldo, C., Gill, D. S., Eason, R. W., Chandler, P. J., J. Mater. Res., 12, 2699 (1997)CrossRefGoogle Scholar
16. Lin, W. Y., Huang, H., Yang, F., Schmitt, J. J., Hunt, A. T., Romanofsky, R. R., Keuls, F. W. Van, Miranda, F. A., and Mueller, C. H., Integrated Ferroelectrics, 29(1-2), A1 (2000)CrossRefGoogle Scholar
17. Hwang, T. J., Hendrick, M. R., Shao, H., Hornis, H. G., and Hunt, A. T., Mater. Sci. Eng., A244, 91 (1998)CrossRefGoogle Scholar
18. Hunt, A. T., Cochran, J. K., and Carter, W. B., U.S. Patent No. 5 652 021 (29 July 1997)Google Scholar
19. Hunt, A. T., and Hornis, H. G., U.S. Patent No. 6 132 653 (17 October 2000)Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication and Properties of Epitaxial Lithium Niobate Thin Films by Combustion Chemical Vapor Deposition (CCVD)
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fabrication and Properties of Epitaxial Lithium Niobate Thin Films by Combustion Chemical Vapor Deposition (CCVD)
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fabrication and Properties of Epitaxial Lithium Niobate Thin Films by Combustion Chemical Vapor Deposition (CCVD)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *