Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T02:44:41.570Z Has data issue: false hasContentIssue false

The Fabrication and Dielectric Properties of Poly(Vinylidene Fluoride Trifluoroethylene Chlorofluoroethylene) Terpolymer Nanorods

Published online by Cambridge University Press:  31 January 2011

Jun-Hong Lin
Affiliation:, The Pennsylvania State University, University Park, Pennsylvania, United States
David Sheng-Guo Lu
Affiliation:, The Pennsylvania State University, Materials Research Institute, RUA 105 Materials Research Laboratory Building, University Park, Pennsylvania, 16802, United States, 814-863-1006, 814-863-7846
Minren Lin
Affiliation:, The Pennsylvania State University, University Park, Pennsylvania, United States
Qiming Zhang
Affiliation:, United States
Get access


Poly(vinylidene fluoride trifluoroethylene chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer nanorods embedded in Anodic Alumina Oxide( AAO) templates with pore sizes of 25, 70, and 200nm diameter were fabricated by extending the time of the wetting process. The instability of the wetting process induced the terpolymer infiltration into the inner space of tepolymer nanotubes, which formed mostly filled terpolymer nanorods. It was observed that all these nanorods embedded in AAO templates still possess relaxor ferroelectric behavior. The broad dielectric peak shifts progressively to higher temperatures with increasing frequency and the frequency- permittivity peak temperature fits well with the Vogel-Fulcher (V-F) relation. Moreover, the freezing temperature of the V-F relation is reduced, with the reduction of nanorod diameter. This indicates that the lateral confinement of the nanorods influences the relaxor ferroelectric behavior of the relaxor ferroelectric P(VDF-TrFE-CFE) terpolymer.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Ishikawa, K. Yoshikawa, K. and Okada, N. Phys. Rev. B37, 5852 (1988).Google Scholar
2 Rudiger, A. Schneller, T. Roelofs, A. Tiedke, S. Schmitz, T. and Waser, R. Appl. Phys. A80, 1247 (2005).Google Scholar
3 Frey, M. H. and Payne, D. A. Phys. Rev. B54, 3158 (1996).Google Scholar
4 Lu, S. G. Mak, C. L. and Wong, K. H. J. Am. Ceram. Soc. 84, 79 (2001).Google Scholar
5 Li, S. Eastman, J. Li, Z. Foster, C. Newnham, R. E. and Cross, L. E. Phys. Lett. A212, 341 (1996).Google Scholar
6 Qu, H. W. Yao, W. Garcia, T. Zhang, J. D. Sorokin, A. V. Ducharme, S. Dowben, P. A. and Fridkin, V. M. Appl. Phys. Lett. 82, 4322 (2003).Google Scholar
7 Bune, A. V., Fridkin, V. M. Ducharme, S. Blinov, L. M. Palto, S. P. Sorokin, A. V. Yudin, S. G. and Zlatkin, A. Nature 391, 874 (1998).Google Scholar
8 Cross, L. E. Ferroelectrics 76, 241 (1987).Google Scholar
9 Viehland, D. Jang, S. Cross, L. E. and Wuttig, M. J. Appl. Phys. 68, 2916 (1990).Google Scholar
10 Zhang, Q. M. Bharti, V. and Zhao, X. Science 280, 2101 (1998).Google Scholar
11 Steinhart, M. Wendorff, J. H. Greiner, A. Wehrspohn, R. B. Nielsch, K. Schilling, J. Choi, J. and Gösele, U., Science 296, 1997 (2002).Google Scholar
12 Steinhart, M. Göring, P., Dernaika, H. Prabhukaran, M. Gösele, U., Hempel, E. and Thurn-Albrecht, T., Phys. Rev. Lett. 97, 027801 (2006).Google Scholar
13 Li, A. P. Muller, F. Birner, A. Nielsch, K. and Gösele, U., J. Appl. Phys. 84, 6023 (1998).Google Scholar
14 Masuda, H. Yada, K. and Osaka, A. Jpn. J. Appl. Phys. 37, L1340 (1998).Google Scholar
15 Jessensky, O. Muller, F. and Gösele, U., Appl. Phys. Lett. 72, 1173 (1998).Google Scholar
16 Masuda, H. and Fukuda, K. Science 268, 1466 (1995).Google Scholar
17 Patterson, A. L. Phys. Rev. 56, 978 (1939).Google Scholar
18 Bobnar, V. Vodopivee, B. Levstik, A. Cheng, Z. Y. and Zhang, Q. M. Phys. Rev. B67, 094205 (2003).Google Scholar
19 Zhang, Q. M. Cheng, Z. Y. and Bharti, V., Appl. Phys. A70, 307 (2000).Google Scholar