Hostname: page-component-546b4f848f-w58md Total loading time: 0 Render date: 2023-05-31T11:28:02.427Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Fabrication and Characterization of GaN Junctionfield Effect Transistors

Published online by Cambridge University Press:  03 September 2012

L. Zhang
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
L. F. Lester
Affiliation:
University of New Mexico, Albuquerque NM 87106
A. G. Baca
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
P. C. Chang
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. G. Willison
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
U. K. Mishra
Affiliation:
University of California, Santa Barbara, CA 93106
S. P. Denbaars
Affiliation:
University of California, Santa Barbara, CA 93106
J. C. Zolper
Affiliation:
Office of Naval Research, Arlington, VA 22217
Get access

Abstract

Junction field effect transistors (JFET) were fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition. The DC and microwave characteristics, as well as the high temperature performance of the devices were studied. These devices exhibited excellent pinch-off and a breakdown voltage that agreed with theoretical predictions. An extrinsic transconductance (gm) of 48 mS/mm was obtained with a maximum drain current (ID) of 270 mA/mm. The microwave measurement showed an fr of 6 GHz and an fmax of 12 GHz. Both the ID and the gm were found to decrease with increasing temperature, possibly due to lower electron mobility at elevated temperatures. These JFETs exhibited a significant current reduction after a high drain bias was applied, which was attributed to a partially depleted channel caused by trapped electrons in the semi-insulating GaN buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dmitriev, V. A., Irvine, K. G., Carter, C. H. Jr., Kuznetsov, I., and Kalinina, E. V., Appl. Phys. Lett., 68, 229 (1996).CrossRefGoogle Scholar
2. Gelmont, B., Kim, K., and Shur, M. S., J. Appl. Phys., 74, 1818 (1993).CrossRefGoogle Scholar
3. Mohammad, S. N., Salvador, A., and Morkoç, H., Proc. IEEE 83, 1306 (1995).CrossRefGoogle Scholar
4. Binari, S. C., Kruppa, W., Dietrich, H. B., Kelner, G., Wickenden, A. E., and Freitas, J. A. JR, Solid-St. Electron., 41, 1549 (1997).CrossRefGoogle Scholar
5. Yoshida, S. and Suzuki, J., J. Appl. Phys., 84, 2940 (1998).CrossRefGoogle Scholar
6. Mishra, U. K., Wu, Y. F., Keller, B. P., Keller, S., and Denbaars, S. P., IEEE Trans. Microwave Theory Tech., 46, 756 (1998).CrossRefGoogle Scholar
7. Khan, M. A., Chen, Q., Shur, M. S., Dermott, B. T., Higgins, J. A., Burm, J., Schaff, W. J., and Eastman, L. F., Solid-St Electron., 41, 1555 (1997).CrossRefGoogle Scholar
8. Zolper, J. C., Shul, R. J., Baca, A. G., Wilson, R. G., Pearton, S. J., Stall, R. A., Appl. Phys. Lett., 68, 2273 (1996).CrossRefGoogle Scholar
9. Chen, C. H., Keller, S., Parish, G., Vetury, R., Kozodoy, P., Hu, E. L., Denbaars, S. P., Mishra, U. K., and Wu, Y. F., Appl. Phys. Lett., 73, 3147 (1998).CrossRefGoogle Scholar
10. Wu, Y. F., Keller, B. P., Kapolnek, D., Kozodoy, P., Denbaars, S. P., and Mishra, U. K., Appl. Phys. Lett., 69, 1438 (1996).CrossRefGoogle Scholar
11. Wu, Y. F., Keller, B. P., Fini, P., Pusl, J., Le, M., Nguyen, N. X., Nguyen, C., Widmen, D., Keller, S., Denbaars, S. P., and Mishra, U. K., Electron. Lett., 33, 1742 (1997).CrossRefGoogle Scholar
12. Eastman, L. F., Chu, K., Schaff, W., Murphy, M., Weimann, N. G., and Eustis, T., MRS Internet J. Nitride Semicond. Res., 2, art. 17 (1997).Google Scholar
13. Binari, S. C., Redwing, J. M., Kelner, G., and Kruppa, W., Electron. Lett., 33, 242 (1997).CrossRefGoogle Scholar
14. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Kozodoy, P., Denbarrs, S. P., and Mishra, U. K., Solid-St. Electron., 41, 1569 (1997).CrossRefGoogle Scholar
15. Osinski, A., Gangopadhyay, S., Lim, B. W., Anwar, M. Z., Khan, M. A., Kuksenkov, D. V., and Temkin, H., Appl. Phys. Lett., 72, 742 (1998).CrossRefGoogle Scholar
16. Hove, J. M. Van, Hichman, R., Klaassen, J. J., Chow, P. P., and Ruden, P. P., Appl. Phys. Lett., 70, 2282 (1997).CrossRefGoogle Scholar
17. Pernot, C., Hirano, A., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys., 37, L1202 (1998).CrossRefGoogle Scholar
18. Zhang, L., Lester, L. F., Baca, A. G., Shul, R. J., Chang, P. C., Willison, C. G., Mishra, U. K., Denbaars, S. P., and Zolper, J. C., IEEE Electron Device Lett., accepted.Google Scholar
19. Aktas, O., Fan, Z. F., Botchkarev, A., Mohammad, S. N., Roth, M., Jenkins, T., Kehias, L., and Morkoç, H., IEEE Electron Device Lett., 18, 293 (1997).CrossRefGoogle Scholar
20. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Denbarrs, S. P., and Mishra, U. K., IEEE Electron Device Lett., 17, 455 (1996).CrossRefGoogle Scholar
21. Tasker, P. J. and Hughes, B., IEEE Electron Device Lett., 10, 291 (1989).CrossRefGoogle Scholar