Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-r4dm2 Total loading time: 0.395 Render date: 2021-09-22T00:54:43.051Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites

Published online by Cambridge University Press:  13 July 2012

Xiaofeng Sui
Affiliation:
Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Xueling Feng
Affiliation:
Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Andrea Di Luca
Affiliation:
Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Clemens A. van Blitterswijk
Affiliation:
Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Lorenzo Moroni
Affiliation:
Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Mark A. Hempenius
Affiliation:
Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
G. Julius Vancso
Affiliation:
Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Get access

Abstract

Novel hydrogels composed of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and redox-responsive poly(ferrocenylsilane) (PFS) macromolecules were formed by photopolymerization. PFS chains bearing acrylate side groups were copolymerized with NIPAM and N,N’-methylenebisacrylamide in tetrahydrofuran in a predetermined ratio under ultraviolet light-emitting diode (UV-LED) irradiation at a wavelength of 365 nm, in the presence of a photoinitiator. Crosslinking occurred smoothly, providing homogeneous hydrogels. The equilibrium swelling ratio, rheology and morphology of these hybrid PNIPAM-PFS-based hydrogels were investigated. In-situ fabrication of silver nanoparticles inside the hydrogel network via reduction of silver nitrate by the PFS chains led to hydrogel composites. These composites showed strong antimicrobial activity while maintaining a high biocompatibility with cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, H., Han, J. S. and Yang, B., Adv. Funct. Mater. 20, 1533 (2010).CrossRefGoogle Scholar
2. Kumar, A., Vemula, P. K., Ajayan, P. M. and John, G., Nat. Mater. 7, 236 (2008).CrossRefGoogle Scholar
3. Lv, M., Su, S., He, Y., Huang, Q., Hu, W. B., Li, D., Fan, C. H. and Lee, S. T., Adv. Mater. 22, 5463 (2010).CrossRefGoogle Scholar
4. Uygun, M., Kahveci, M. U., Odaci, D., Timur, S. and Yagci, Y., Macromol. Chem. Physic. 210, 1867 (2009).CrossRefGoogle Scholar
5. Smidsrød, O. and Guillet, J. E., Macromolecules 2, 272 (1969).CrossRefGoogle Scholar
6. Hempenius, M. A., Cirmi, C., Lo Savio, F., Song, J. and Vancso, G. J., Macromol. Rapid Commun. 31, 772 (2010).CrossRefGoogle Scholar
7. Sui, X. F., van Ingen, L., Hempenius, M. A. and Vancso, G. J., Macromol. Rapid Commun. 31, 2059 (2010).Google Scholar
8. Whittell, G. R. and Manners, I., Adv. Mater. 19, 3439 (2007).CrossRefGoogle Scholar
9. Bellas, V. and Rehahn, M., Angew. Chem. -Int. Edit. 46, 5082 (2007).CrossRefGoogle Scholar
10. Rulkens, R., Lough, A. J., Manners, I., Lovelace, S. R., Grant, C. and Geiger, W. E., J. Am. Chem. Soc. 118, 12683 (1996).CrossRefGoogle Scholar
11. Wang, H., Wang, X. S., Winnik, M. A. and Manners, I., J. Am. Chem. Soc. 130, 12921 (2008).Google Scholar
12. Porterfield, J. S., Bull. World Health Organ. 22, 373 (1960).Google Scholar
13. Ahmed, S. A., Gogal, R. M. Jr. and Walsh, J. E., J. Immunol. Methods 170, 211 (1994).CrossRefGoogle Scholar
14. Potta, T., Chun, C. and Song, S. C., Biomacromolecules 11, 1741 (2010).CrossRefGoogle Scholar
15. Heeb, R., Bielecki, R. M., Lee, S. and Spencer, N. D., Macromolecules 42, 9124 (2009).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *