Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.294 Render date: 2022-08-16T10:31:52.936Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Experimental Studies and Thermodynamic Simulations of Phase Transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B Alloys

Published online by Cambridge University Press:  28 August 2018

Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Barbara Boeck
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Wilfried Wallgram
Affiliation:
Bohler Schmiedetechnik GmbH&CoKG, A-8605, Kapfenberg, Austria
Thomas Schmoelzer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Laura M. Droessler
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Gerald A. Zickler
Affiliation:
Christian Doppler Laboratory for Early Stages of Precipitation, A-8700, Leoben, Austria
Harald Leitner
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria Christian Doppler Laboratory for Early Stages of Precipitation, A-8700, Leoben, Austria
Andreas Otto
Affiliation:
GfE Metalle und Materialien GmbH, D-90431, Nürnberg, Germany
Get access

Abstract

TNM alloys are novel γ-TiAl based alloys which exhibit a high concentration of β-stabilizing elements such as Nb and Mo. Due to the high volume fraction of disordered β-phase these alloys can be hot-die forged under near conventional conditions. In this study, solid-state phase transformations and phase transition temperatures in Ti-(41-45)Al-4Nb-1Mo-0.1B (in at%) alloys were analyzed experimentally and compared to thermodynamic calculations. Results from scanning electron microscopy, conventional and high-energy X-ray diffraction as well as differential scanning calorimetry were used for the characterization of the prevailing phases and phase transformations. For the prediction of phase stabilities and phase transition temperatures thermodynamic calculations were conducted. ThermoCalc® was applied using a commercially available TiAl database. Combining all results a stable as well as a metastable phase diagram for Ti-(41-45)Al-4Nb-1Mo-0.1B alloys is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Structural Aluminides for Elevated Temperatures, edited by Kim, Y-W., Morris, D., Yang, R., and Leyens, C. (TMS, Warrendale PA, 2008).Google Scholar
[2] Clemens, H., Chladil, H.F., Wallgram, W., Böck, B., Kremmer, S., Otto, A., Güther, V., Bartels, A., in [1], p. 217.Google Scholar
[3] Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A., Bartels, A., Adv. Eng. Mater. 10, 707 (2008).CrossRefGoogle Scholar
[4] Clemens, H., Chladil, H.F., Wallgram, W., Zickler, G.A., Gerling, R., Liss, K.-D., Kremmer, S., Güther, V., Smarsly, W., Intermetallics 16, 827 (2008).CrossRefGoogle Scholar
[5] Küstner, V., Oehring, M., Chatterjee, A., Güther, V., Clemens, H., Appel, F., in Gamma Titanium Aluminides 2003, edited by Kim, Y-W., Clemens, H. and Rosenberger, A. H. (Warrendale, PA: TMS, 2003), p. 89.Google Scholar
[6] Appel, F., Oehring, M., Wagner, R., Intermetallics 8, 1283 (2000).CrossRefGoogle Scholar
[7] Droessler, L.M., Schmoelzer, T., Wallgram, W., Cha, L., Das, G., Clemens, H., these proceedings.Google Scholar
[8] Boeck, B., Diploma thesis, Montanuniversität, Leoben, Austria (2008).Google Scholar
[9] Reimers, W., Pyzalla, A.R., Schreyer, A., Clemens, H. (Eds.), Neutrons and Synchrotron Radiation in Engineering Materials Science (WILEY-VCH, Weinheim, Germany, 2008).CrossRefGoogle Scholar
[10] Saunders, N., in Gamma Titanium Aluminides 1999, edited by Kim, Y-W., Dimiduk, D.M. and Loretto, M.H. (TMS, Warrendale PA, 1999), p. 183.Google Scholar
[11] Ansara, I., Int. Met. Reviews 22, 20 (1979).Google Scholar
[12] Saunders, N., Miodownik, A.P., CALPHAD - A Comprehensive Guide (Elsevier Science, New York, 1998).Google Scholar
[13] Chladil, H.F., Clemens, H., Zickler, G.A., Takeyama, M., Kozeschnik, E., Bartels, A., Bulaps, T., Gerling, R., Kremmer, S., Yeoh, L., Liss, K.-D., Int. J. Mat. Res. 98, 1131 (2007).CrossRefGoogle Scholar
[14] Wallgram, W., Clemens, H., Böck, B., Schmoelzer, T., Zickler, G.A., Otto, A., Intermetallics (in preparation).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Experimental Studies and Thermodynamic Simulations of Phase Transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B Alloys
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Experimental Studies and Thermodynamic Simulations of Phase Transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B Alloys
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Experimental Studies and Thermodynamic Simulations of Phase Transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B Alloys
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *