Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-mgjtl Total loading time: 0.28 Render date: 2022-06-24T23:53:46.584Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Experimental and Theoretical Investigation into the Dielectric Behaviour of Ferroelectric Thin Film Superlattices

Published online by Cambridge University Press:  18 March 2011

J. M. Gregg
Affiliation:
Condensed Matter Physics and Materials Science Division School of Maths and Physics, Queen's University Belfast Belfast BT7 1NN, U. K.
D. O'Neill
Affiliation:
Condensed Matter Physics and Materials Science Division School of Maths and Physics, Queen's University Belfast Belfast BT7 1NN, U. K.
G. Catalan
Affiliation:
Condensed Matter Physics and Materials Science Division School of Maths and Physics, Queen's University Belfast Belfast BT7 1NN, U. K.
R. M. Bowman
Affiliation:
Condensed Matter Physics and Materials Science Division School of Maths and Physics, Queen's University Belfast Belfast BT7 1NN, U. K.
Get access

Abstract

Pulsed laser deposition has been used to fabricate thin-film capacitor structures in which the dielectric layer is composed of a superlattice of Ba0.8Sr0.2TiO3 and Ba0.2Sr0.8TiO3. The properties of the capacitors were investigated as a function of superlattice periodicity. The dielectric constant was significantly enhanced, and temperature migration of the peak in dielectric constant as a function of frequency was observed, at stacking periodicities of a few unit cells. However, such “relaxor-like’ features were found to be associated with high dielectric loss. Analysis of the imaginary permittivity as a function of frequency showed that fine-scale superlattices conform to Maxwell-Wagner behaviour, indicating that the observed features may be an artefact of increased carrier mobility. Modelling showed that both dielectric enhancement and frequency relaxation could readily be reproduced by Maxwell-Wagner formalism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Park, K., Salamancariba, L., Wuttig, M., and Viehland, D., J. Mat Sci, 29, 1284 (1994).CrossRefGoogle Scholar
[2] Mathan, N. de, J. Phys.: Condens. Matter 3, 8159 (1991).Google Scholar
[3] Setter, N. and Cross, L. E., J. Appl. Phys. 51, 4356 (1980).CrossRefGoogle Scholar
[4] Yan, Y., Pennycook, S. J., Xu, Z., and Viehland, D., Appl. Phys. Lett., 72, 3145 (1998).CrossRefGoogle Scholar
[5] Erbil, A., Kim, Y. and Gerhardt, R. A., Phys. Rev. Lett., 77, 1628 (1996).Google Scholar
[6] Qu, B. D., Evstigneev, M., Johnson, D. J. and Prince, R. H., Appl. Phys. Lett., 72, 1394 (1998).CrossRefGoogle Scholar
[7] Tabata, H., Tanaka, H., Kawai, T., Okuyama, M., Jpn. J. Appl. Phys., 34, 544 (1995).CrossRefGoogle Scholar
[8] Tabata, H., Tanaka, H., and Kawai, T., Appl. Phys. Lett. 65, 1970 (1994).CrossRefGoogle Scholar
[9] Li, Shaoping, Eastman, J. A., Vetrone, J. M., Newnham, R. E. and Cross, L. E., Phil. Mag. B, 76, 47 (1997).CrossRefGoogle Scholar
[10] Kanno, I., Hayashi, S., Takayama, R. and Hirao, T., Appl. Phys. Lett., 68, 328 (1996).CrossRefGoogle Scholar
[11] Ohya, Y., Ito, T., Takahashi, Y., Jpn. J. Appl. Phys. 33, 5272 (1994).CrossRefGoogle Scholar
[12] , Volger, Progress in Semiconductors, 4, 207 (1960).Google Scholar
[13] Hippel, A. von, Dielectrics and Waves, Artech House, London, 1995 Google Scholar
[14] Roy, D., Krupanidhi, S. B., Appl. Phys. Lett., 62, 1056 (1993).CrossRefGoogle Scholar
[15] Stumpe, R., Wagner, D., Bauerle, D., Phys. Stat. Sol., 75, 143 (1983).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Experimental and Theoretical Investigation into the Dielectric Behaviour of Ferroelectric Thin Film Superlattices
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Experimental and Theoretical Investigation into the Dielectric Behaviour of Ferroelectric Thin Film Superlattices
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Experimental and Theoretical Investigation into the Dielectric Behaviour of Ferroelectric Thin Film Superlattices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *