Hostname: page-component-5db6c4db9b-wnbrb Total loading time: 0 Render date: 2023-03-25T06:06:14.943Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Evidence of strong indium segregation in MOCVD InxGa1-xN/GaN quantum layers

Published online by Cambridge University Press:  01 February 2011

Grzegorz Maciejewski
Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00–049 Warsaw, Poland
Grzegorz Jurczak
Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00–049 Warsaw, Poland
Sławomir Kret
Institute of Physics PAS, Al. Lotników 32/36, 02–668 Warsaw, Poland
Paweł Dłużewski
Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00–049 Warsaw, Poland
Pierre Ruterana
SIFCOM, UMR6176, ENSICAEN-CNRS, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
Get access


An investigation of 1–5 nm in diameter indium rich clusters in MOCVD InxGa1-xN/GaN quantum well is carried out. To this end, quantitative High Resolution Transmission Electron Microscopy (HRTEM) is coupled with the Finite Element Method (FEM) for the calculation of thin foil relaxation and for image simulation. The measurement of the tetragonal distortion from HRTEM images is a useful tool for the determination of chemical composition in heterostructures. However, for a correct interpretation of the measured lattice distortion on HRTEM images, one needs to take into account the strain averaging across TEM sample and inhomogeneous relaxation of the sample. As a first step, 3D FEM simulation of the relaxation process as a function of the position of indium rich cluster relative to the foil surface is performed. Next, the calculated 3D displacement field is used to simulate the HRTEM images. The results clearly show that the magnitude of the strain field depends on the cluster position. It is concluded that the HRTEM images of indium rich clusters can differ even for the same indium content due to different positions of the clusters.

Research Article
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Nakamura, S., Appl. Phys. Lett. 70, 681 (1997).CrossRefGoogle Scholar
2. Kisielowski, C., Liliental-Weber, Z., Nakamura, S., Jpn. J. Appl. Phys. 36, 6932 (1997).CrossRefGoogle Scholar
3. Ruterana, P., Kret, S., Vivet, A., Maciejewski, G., Dluzewski, P., J. Appl. Phys. 91, 8979 (2002).CrossRefGoogle Scholar
4. Watanabe, K., Nakanishi, N., Yamazaki, T., Yang, J. R., Huang, S. Y., Inoke, K., Hsu, J. T., Tu, R. C. and Shiojiri, M., Appl. Phys. Lett. 5, 82 (2003).Google Scholar
5. Jurczak, G., Maciejewski, G., Kret, S., Dluzewski, P., Ruterana, P., J. Met. and Compound (submitted).Google Scholar
6. Dłużewski, P., J. of Elasticity, 60, 119129 (2000).CrossRefGoogle Scholar
7. Singh, R., Dappalapudi, D., Maussakas, T. D., Romano, L. T., Appl. Phys. Lett. 70, 1089 (1997).CrossRefGoogle Scholar
8. Zienkiewicz, O. C. and Taylor, R. J., The Finite Element Method, Fourth Edition (McGraw-Hill, London, 1989).Google Scholar
9. Optimas 6.5, User Guide and Technical Reference, Media Cybernetics, 1999.Google Scholar
10. Bennebas, T., Francois, P., Androussi, Y. and Lefebvre, A., J. Appl. Phys. 80, 2763 (1996).CrossRefGoogle Scholar
11. Mceluskey, M. D., Romano, L. T., Krusar, B. S., Baur, D. P., Johsan, W. M., Appl. Phys. Lett. 72, 1730 (1998).CrossRefGoogle Scholar
12. Reeber, R. R. and Wang, K., MRS Internet J. Nitride Semicond. Res. 6 art. 3, 2001.CrossRefGoogle Scholar
13. Stadelmann, P., Ultramicroscopy 21, 131 (1987)CrossRefGoogle Scholar