Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-6pkmb Total loading time: 0.29 Render date: 2023-02-08T17:42:53.509Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Evidence of strong indium segregation in MOCVD InxGa1-xN/GaN quantum layers

Published online by Cambridge University Press:  01 February 2011

Grzegorz Maciejewski
Affiliation:
Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00–049 Warsaw, Poland
Grzegorz Jurczak
Affiliation:
Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00–049 Warsaw, Poland
Sławomir Kret
Affiliation:
Institute of Physics PAS, Al. Lotników 32/36, 02–668 Warsaw, Poland
Paweł Dłużewski
Affiliation:
Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00–049 Warsaw, Poland
Pierre Ruterana
Affiliation:
SIFCOM, UMR6176, ENSICAEN-CNRS, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
Get access

Abstract

An investigation of 1–5 nm in diameter indium rich clusters in MOCVD InxGa1-xN/GaN quantum well is carried out. To this end, quantitative High Resolution Transmission Electron Microscopy (HRTEM) is coupled with the Finite Element Method (FEM) for the calculation of thin foil relaxation and for image simulation. The measurement of the tetragonal distortion from HRTEM images is a useful tool for the determination of chemical composition in heterostructures. However, for a correct interpretation of the measured lattice distortion on HRTEM images, one needs to take into account the strain averaging across TEM sample and inhomogeneous relaxation of the sample. As a first step, 3D FEM simulation of the relaxation process as a function of the position of indium rich cluster relative to the foil surface is performed. Next, the calculated 3D displacement field is used to simulate the HRTEM images. The results clearly show that the magnitude of the strain field depends on the cluster position. It is concluded that the HRTEM images of indium rich clusters can differ even for the same indium content due to different positions of the clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Nakamura, S., Appl. Phys. Lett. 70, 681 (1997).CrossRefGoogle Scholar
2. Kisielowski, C., Liliental-Weber, Z., Nakamura, S., Jpn. J. Appl. Phys. 36, 6932 (1997).CrossRefGoogle Scholar
3. Ruterana, P., Kret, S., Vivet, A., Maciejewski, G., Dluzewski, P., J. Appl. Phys. 91, 8979 (2002).CrossRefGoogle Scholar
4. Watanabe, K., Nakanishi, N., Yamazaki, T., Yang, J. R., Huang, S. Y., Inoke, K., Hsu, J. T., Tu, R. C. and Shiojiri, M., Appl. Phys. Lett. 5, 82 (2003).Google Scholar
5. Jurczak, G., Maciejewski, G., Kret, S., Dluzewski, P., Ruterana, P., J. Met. and Compound (submitted).Google Scholar
6. Dłużewski, P., J. of Elasticity, 60, 119129 (2000).CrossRefGoogle Scholar
7. Singh, R., Dappalapudi, D., Maussakas, T. D., Romano, L. T., Appl. Phys. Lett. 70, 1089 (1997).CrossRefGoogle Scholar
8. Zienkiewicz, O. C. and Taylor, R. J., The Finite Element Method, Fourth Edition (McGraw-Hill, London, 1989).Google Scholar
9. Optimas 6.5, User Guide and Technical Reference, Media Cybernetics, 1999.Google Scholar
10. Bennebas, T., Francois, P., Androussi, Y. and Lefebvre, A., J. Appl. Phys. 80, 2763 (1996).CrossRefGoogle Scholar
11. Mceluskey, M. D., Romano, L. T., Krusar, B. S., Baur, D. P., Johsan, W. M., Appl. Phys. Lett. 72, 1730 (1998).CrossRefGoogle Scholar
12. Reeber, R. R. and Wang, K., MRS Internet J. Nitride Semicond. Res. 6 art. 3, 2001.CrossRefGoogle Scholar
13. Stadelmann, P., Ultramicroscopy 21, 131 (1987)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evidence of strong indium segregation in MOCVD InxGa1-xN/GaN quantum layers
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Evidence of strong indium segregation in MOCVD InxGa1-xN/GaN quantum layers
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Evidence of strong indium segregation in MOCVD InxGa1-xN/GaN quantum layers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *