Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T16:02:12.919Z Has data issue: false hasContentIssue false

Evaluation Of Amorphous Diamond-Like Carbon And Boron Nitride Films As Low Permittivity Dielectrics

Published online by Cambridge University Press:  15 February 2011

J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. A. Apblett
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
N. Missert
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. L. Lovejoy
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
P. B. Mirkarimi
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
K. F. McCarty
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
Get access

Abstract

Although films of diamond-like carbon (DLC) and hexagonal boron nitride (h-BN) have shown low dielectric constants in the range of 3 to 4, these materials have been unsuitable for use as interconnect dielectrics due to poor thermal stability and environmental degradation. These deficiencies can be addressed by depositing DLC films free of hydrogen (a-tC) and depositing the cubic phase of BN (c-BN). The dielectric characteristics of hydrogen-free DLC and c-BN that have been deposited by pulsed-laser deposition (PLD) have been evaluated using metal-insulator-metal and metal-insulator-semiconductor structures. For comparison, the dielectric characteristics of h-BN deposited by electron cyclotron resonance (ECR) were also evaluated. Despite the superior thermal and environmental stability of the a-tC and c-BN films and the attractively low deposition thermal budget (room temperature deposition for a-tC films, 400°C for c-BN films), the films exhibit dielectric constants comparable to those of bulk diamond and bulk BN, ∼ 6. Furthermore, the a-tC and c-BN films exhibit high compressive stress in the GPa range which limits their usefulness only to those applications requiring a thin dielectric layer, e.g. diffusion barriers or encapsulants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Landolt-Börnstein, : Numerical Data and Functional Relationships in Science and Technology, edited by Madelung, O., Schulz, M., and Weiss, H. (Springer-Verlag, Berlin, 1982).Google Scholar
2. Ishii, A., Amadatsu, S., Minomo, S., Taniguchi, M., Sugiyo, M., and Kobayashi, T., J. Vac. Sci. Technol. A 12, 1068 (1994).Google Scholar
3. Mandel, T., Frischholz, M., Helbig, R., and Hammerschmidt, A., Appl. Phys. Lett. 64, 3637 (1994).Google Scholar
4. Mandel, Th., Frischholz, M., Helbig, R., Birkle, S., and Hammerschmidt, A., Appl. Surf. Sci. 65/66, 795 (1993).Google Scholar
5. Chan, K. K., Silva, S. R. P., and Amaratunga, G. A. J., Thin Solid Films 212, 232 (1992).Google Scholar
6. Nguyen, S.V., Nguyen, T., Treichel, H., and Spindler, O., J. Electrochem. Soc. 141, 1633 (1994).Google Scholar
7. Cameron, D. C., Karim, M. Z., and Hashmi, M. S. J., Thin Solid Films 236, 96 (1993).Google Scholar
8. Maeda, M., Makino, T., Yamamoto, E., and Konaka, S., IEEE Trans. Electron Devices 36, 1610 (1989).Google Scholar
9. Schmollla, W. and Hartnagel, H. L., Solid State Electron. 26, 931 (1983).Google Scholar
10. Hirayama, M. and Shohno, K., J. Electrochem. Soc. 122, 1671 (1975).Google Scholar
11. Rand, M. J. and Roberts, J. F., J. Electrochem. Soc. 115, 423 (1968).Google Scholar
12. Parmeter, J. E., Tallant, D. R., and Siegal, M. P., Mat. Res. Soc. Proc. 349, 513 (1994); D. R. Tallant, J. E. Parmeter, M. P. Siegal, and R. L. Simpson, Diamond Relat. Mater. 4, 191 (1995).Google Scholar
13. Siegal, M. P., Friedmann, T. A., Kurtz, S. R., Tallant, D. R., Simpson, R. L., Dominguez, F., and McCarty, K. F., Mat. Res. Soc. Proc. 349, 507 (1994); and T. A. Friedmann, K. F. McCarty, and M. P. Siegal, in preparation.Google Scholar
14. Shapoval, S. Y., Petrashov, V. T., Popov, O. A., Westner, A. O., , M. D. Yoder Jr., and Lok, C. K. C., Appl. Phys. Lett. 57, 1885 (1990).Google Scholar
15. Friedmann, T. A., Mirkarimi, P. B., Medlin, D. L., McCarty, K. F., Klaus, E. J., Boehme, D. R., Johnsen, H. A., Mills, M. J., Ottesen, D. K., and Barbour, J. C., J. Appl. Phys. 76, 3088 (1994).Google Scholar
16. Martínez-Miranda, L. J., Sullivan, J. P., Friedmann, T. A., Siegal, M. P., Mercer, T. W., and DiNardo, N. J., Mat. Res. Soc. Proc. (1995), in press.Google Scholar
17. Toney, M. F. and Brennan, S., J. Appl. Phys. 66, 1861 (1989); and C. A. Lucas, T. D. Nguyen, and J. B. Kortright, Appl. Phys. Lett. 59, 2101 (1991).Google Scholar
18. Cardinale, G. F., Mirkarimi, P. B., McCarty, K. F., Klaus, E. J., Medlin, D. L., Clift, W. M., and Howitt, D. G., Thin Solid Films 253 (1994).Google Scholar
19. McDonald, J. F., Dabral, S., Wu, X.-M., Martin, A., and Lu, T.- M., Proc. VLSI Multilevel Interconnect. Conf., 366 (1989).Google Scholar