Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-lkk24 Total loading time: 0.193 Render date: 2021-09-17T20:27:29.500Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Epitaxial Silicon-Carbon Alloy Growth by Laser Induced Melting and Solidification

Published online by Cambridge University Press:  21 February 2011

Kenneth M. Kramer
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Michael O. Thompson
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

Ion implantation of carbon into single-crystal silicon followed by excimer laser irradiation was used to create supersaturated, epitaxial SixC1-x. films. Crystallization proceeded from the underlying single-crystal silicon through the carbon containing layers at velocities of approximately 5 m/s. Characterization by high-resolution x-ray diffraction and Fourier-transform infrared absorption indicate that the carbon is found predominantly on substi-tutional lattice sites for concentrations up to 1.4 at.% C. Secondary-ion mass spectrometry profiles and numerical mass transfer calculations were used to estimate the diffusion coefficient of carbon in the liquid as 2-3 × 10−4cm2/s with a segregation coefficient greater than 0.4. Unusual diffusion behavior was observed for the carbon at 1.4 at.% C. At higher concentrations, evidence of SiC precipitates was observed in transmission electron microscope images and FTIR absorption spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zeiglar, J.F., TRIM software, (1992).Google Scholar
2 Phillips, , HRS software, (1990).Google Scholar
3 Windisch, D. and Becker, P., Philos. Mag. A 58, 435 (1988).CrossRefGoogle Scholar
4 Strane, J., Ph.D. thesis, Cornell University, (1994).Google Scholar
5 Akimchenko, I.P., Kisseleva, K.F., Krasnopvtsev, V.V., Touryanski, A.G., and Vavilov, V.S., Radiat. Eff. 48, 7 (1980).CrossRefGoogle Scholar
6 Bean, A.R. and Newman, R.C., J. Phys. Chem. Solids 32, 1211 (1971).CrossRefGoogle Scholar
7 Newman, R.C., Mater. Res. Soc. Proc. 59, 403 (1985).CrossRefGoogle Scholar
8 Spitzer, W.G., Kleinman, D.A., and Frosch, C.J., Phys. Rev. 113, 133 (1959).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Epitaxial Silicon-Carbon Alloy Growth by Laser Induced Melting and Solidification
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Epitaxial Silicon-Carbon Alloy Growth by Laser Induced Melting and Solidification
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Epitaxial Silicon-Carbon Alloy Growth by Laser Induced Melting and Solidification
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *