Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-q7wkk Total loading time: 0.356 Render date: 2022-07-01T05:50:03.478Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Epitaxial Growth of SiC on Non-Typical Orientations and MOS Interfaces

Published online by Cambridge University Press:  21 March 2011

Hiroyuki Matsunami
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
Tsunenobu Kimoto
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
Hiroshi Yano
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
Get access

Abstract

High-quality 4H-SiC has been epitaxially grown on (1120) substrates by chemical vapor deposition. The physical properties of epilayers and MOS interfaces on both (1120) and off-axis (0001) substrates are elucidated. An unintentionally doped 4H-SiC epilayer on (1120) shows a donor concentration of 1×1014 cm−3 with a total trap concentration as low as 3.8×1012 cm−3. Inversion-type planar MOSFETs fabricated on 4H-SiC (1120) exhibit a high channel mobility of 96 cm2/Vs. The channel mobility decreases according to the T−2.2 dependence above 200K, indicating reduced Coulomb scattering and/or electron trapping. The superior MOS interface on (1120) originates from the much lower interface state density near the conduction band edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Neudeck, P.G. and Powell, J.A., IEEE Electron Device Lett. 15, 63(1994).CrossRefGoogle Scholar
[2] Takahashi, J. and Ohtani, N., Phys. Stat. Sol. (b) 202, 163(1997).3.0.CO;2-1>CrossRefGoogle Scholar
[3] Burk, A.A. Jr, Barrett, D.L., Hobgood, H.M., Siergiej, R.R., Braggins, T.T., Clarke, R.C., Eldridge, G.W., Brandt, C.D., Larkin, D.J., Powell, J.A., and Choyke, W.J., Silicon Carbide and Related Materials (IOP, Bristol, 1994), p.29.Google Scholar
[4] Hallin, C., Ellison, A., Ivanov, I.G., Henry, A., Son, N.T., and Janzen, E., Mat. Sci. Forum 264268, 123(1998).Google Scholar
[5] Kimoto, T., Yamamoto, T., Chen, Z.Y., Yano, H., and Matsunami, H., Mat. Sci. Forum 338342, 189(2000).Google Scholar
[6] Agarwal, A.K., Casady, J.B., Rowland, L.B., Valek, W.F., White, M.H., and Brandt, C.D., IEEE Electron Device Lett. 18, 586(1997).CrossRefGoogle Scholar
[7] Spitz, J., Melloch, M.R., Cooper, J.A. , Jr., and Capano, M.A., IEEE Electron Device Lett. 19, 100(1998).CrossRefGoogle Scholar
[8] Sugawara, Y. and Asano, K., Proc. of the 10th Int. Symp. Power Semicond. Devices & Ics (Kyoto, 1998), p.119.Google Scholar
[9] Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K., and Sugawara, Y., IEEE Electron Device Lett. 20, 611(1999).CrossRefGoogle Scholar
[10] Matsunami, H. and Kimoto, T., Mat. Sci. & Eng. R20, 125(1997).CrossRefGoogle Scholar
[11] Chen, Z.Y., Kimoto, T., and Matsunami, H., Jpn. J. Appl. Phys. 38, L1375(1999).CrossRefGoogle Scholar
[12] Larkin, D.J., Neudeck, P.G., Powell, J.A., and Matus, L.G., Appl. Phys. Lett. 65, 1659(1994).CrossRefGoogle Scholar
[13] Okushi, H. and Tokumaru, Y., Jpn. J. Appl. Phys. Suppl. 20–1, 261 (1981).CrossRefGoogle Scholar
[14] Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W.J., Schöner, A., and Nordell, N., Phys. Stat. Sol. (a) 162, 199(1997).3.0.CO;2-0>CrossRefGoogle Scholar
[15] Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K., and Sugawara, Y., Mat. Sci. Forum 338–342, 1105(2000).CrossRefGoogle Scholar
[16] Schadt, M., Pensl, G., Devaty, R.P., Choyke, W.J., Stein, R., and Stephani, D., Appl. Phys. Lett. 65, 3120(1994).CrossRefGoogle Scholar
[17] Saks, N.S., Mani, S.S., Agarwal, A.K., and Hegde, V.S., Mat. Sci. Forum 338–342, 737(2000).CrossRefGoogle Scholar
[18] Yano, H., Kimoto, T., and Matsunami, H., Late News Abstracts of 3rd European Conf. on Silicon Carbide and Related Materials (Kloster Banz, 2000), p.10.Google Scholar
[19] Shenoy, J.N., Das, M.K., Cooper, J.A. , Jr., Melloch, M.R., and Palmour, J.W., J. Appl. Phys. 79, 3042(1996).CrossRefGoogle Scholar
[20] Bassler, M., Afanas'ev, V., Pensl, G., and Schulz, M., Mat. Sci. Forum 338–342, 1065(2000).CrossRefGoogle Scholar
[21] Pensl, G., Bassler, M., Ciobanu, F., Afanas'ev, V., Yano, H., Kimoto, T., and Matsunami, H., in this volume.Google Scholar
[22] Yano, H., Katafuchi, F., Kimoto, T., and Matsunami, H., IEEE Trans. Electron Devices 46, 504(1999).CrossRefGoogle Scholar
[23] Schörner, R., Friedrichs, P., and Peters, D., IEEE Trans. Electron Devices 46, 533(1999).CrossRefGoogle Scholar
[24] Afanas'ev, V.V., Bassler, M., Pensl, G., and Schulz, M., Phys. Stat. Sol. (a) 162, 321(1997).3.0.CO;2-F>CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Epitaxial Growth of SiC on Non-Typical Orientations and MOS Interfaces
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Epitaxial Growth of SiC on Non-Typical Orientations and MOS Interfaces
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Epitaxial Growth of SiC on Non-Typical Orientations and MOS Interfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *