Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-8tjh8 Total loading time: 0.229 Render date: 2021-10-21T22:34:33.264Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Epitaxial Growth of SiC in a Vertical Multi-Wafer CVD System: Already Suited as Production Process?

Published online by Cambridge University Press:  10 February 2011

Roland Rupp
Affiliation:
Siemens AG,Semiconductor Components Group, HL PS E SiC, D-80312 Munich, Germany
Christian Hecht
Affiliation:
Siemens AG, Corporate Technology, Department ZT EN, Box 3220, D-91050 Erlangen, Germany
Arno Wiedenhofer
Affiliation:
Siemens AG, Corporate Technology, Department ZT EN, Box 3220, D-91050 Erlangen, Germany
Dietrich Stephani
Affiliation:
Siemens AG, Corporate Technology, Department ZT EN, Box 3220, D-91050 Erlangen, Germany
Get access

Abstract

Results about a new CVD system suited for epitaxial growth on six 2 inch SiC-wafers at a time are presented. Excellent gas flow stability is achieved for this new reactor type as shown by in- situ observations of the gas flow dynamics in the reactor chamber. These experimental results agree favorably with numerical process simulation results.

The epitaxial layers grown in the multi-wafer system so far show a by an order of magnitude higher background impurity level (≤1015 cm−3) as reported previously for layers grown in single-wafer systems by the authors and other groups (≤ 1014 cm−3). On the other hand, the doping homogeneity achieved until today is very encouraging. The variation on a 2 inch wafer is less than ± 20% at about 1*1016 cm−3. The wafer to wafer variation of the average doping value both within a run and from run to run is within 15 %. The reproducibility and uniformity of the layer thickness is even better (total thickness variation ≤5% on a 2 inch wafer). The surface of the epitaxial layers is very smooth with a typical growth step height of 0.5 nm (4H, 8° off orientation). First measurements on Schottky diodes build on these layers show low leakage current values indicating low point defect density in the epitaxial layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matsunami, H., Ueda, T., Nishino, H., Mater. Res. Soc. Symp. Proc. 162 (1990) p. 397 10.1557/PROC-162-397CrossRefGoogle Scholar
2. Rottner, K., Helbig, R., J. Cryst. Growth. 144 (1994) p. 258 10.1016/0022-0248(94)90465-0CrossRefGoogle Scholar
3. Larkin, D.J., Mat. Res. Soc. Symp. Proc., 410 (1996) p. 337 10.1557/PROC-410-337CrossRefGoogle Scholar
4. Larkin, D.J., Neudeck, P.G., Powell, J.A., Matus, L.G., Appl. Phys. Lett. 65 (1994) p. 1659 10.1063/1.112947CrossRefGoogle Scholar
5. Aixtron AG, Kackertstrasse 15–17, D52072 Aachen, Germany 6. Epigress AB, Ideon Science & Technology Park, SE-223 70 Lund, Sweden 7. EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873, USA 8. Burk, A.A., O'Loughlin, M.J., Mani, S.S., Mat. Sci. Forum 264–268 (1998) p. 83 10.4028/www.scientific.net/MSF.264-268.83CrossRefGoogle Scholar
9. Rupp, R., Wiedenhofer, A., Stephani, D., Proc. of the 2nd Europ. Conf. on SiC and Rel. Mat. ECSCRM'98, Sept. 2–4 1998 Montpellier, France, in press 10. Rupp, R., Lanig, P., Voelkl, J., Stephani, D., J. Cryst. Growth, 146 (1995) p. 37 10.1016/0022-0248(94)00466-8CrossRefGoogle Scholar
11. McMillan, M.F., Forsberg, U., Perssons, P.O.A., Hultman, L., Janzdn, E., Material Science Forum, 264–268 (1997) p. 245 Google Scholar
12. Chen, C.Q., Engelbrecht, F., Pepperemuiller, C., Schulze, N., Helbig, R., Rupp, R., Institute of Appl. Physics, Univ. Erlangen-Ntirnberg, to be published 13. Rupp, R., Makarov, Yu. N., Behner, H., Wiedenhofer, A., phys stat sol (b), 202 (1997) p. 281 10.1002/1521-3951(199707)202:1<81::AID-PSSB81>3.0.CO;2-M3.0.CO;2-M>CrossRef3.0.CO;2-M>Google Scholar
14. Makarov, Yu. N., Egorov, Yu.E., Galyukov, A.O., Vorob'ev, A.N., Zhmakin, A.I., Rupp, R., Proc. of the 2 nd Europ. Conf. on SiC and Rel. Mat. ECSCRM'98, Sept. 24 1998 Montpellier, France, in pressGoogle Scholar
15. Vorob'ev, A.N., Yu, S.. Karpov, , Komissarov, A.E., Makarov, Yu. N., Segal, A.S., Zhamakin, A.I., Rupp, R., Proc. of the 2nd Europ. Conf. on SiC and Rel. Mat. ECSCRM'98, Sept. 24 1998 Montpellier, France, in pressGoogle Scholar
16. Rupp, R., Wiedenhofer, A., Friedrichs, P., Peters, D., Schörmer, R., Stephani, D., Material Science Forum, 264–268 (1998) p. 89 10.4028/www.scientific.net/MSF.264-268.89CrossRefGoogle Scholar
17. Rupp, R., Lanig, P., VÖklk, J., Stephani, D., Mat. Res. Soc. Proc. 423(1996) p. 253 10.1557/PROC-423-253CrossRefGoogle Scholar
18. Devaty, R.P., Choyke, W.J., phys stat sol (a), 162 (1997) p. 5 10.1002/1521-396X(199707)162:1<5::AID-PSSA5>3.0.CO;2-J3.0.CO;2-J>CrossRef3.0.CO;2-J>Google Scholar
19. Kimoto, T., Itoh, A., Matsunami, H., Appl. Phys. Lett. 66 (1995) p. 3645 10.1063/1.114127CrossRefGoogle Scholar
20. Mitlehner, H., Bartsch, W., Bruckmann, M., Dohnke, K.O., Weinert, U., Proc. of the ISPSD'97 Weimar 1997 IEEE p. 165 Google Scholar
21. Mitlehner, H., Friedrichs, P., Peters, D., Schrmer, R., Weinert, U., Weis, B., Stephani, D., Proc. of the ISPSD'98 Kyoto 1998 IEEE p. 127 Google Scholar
22. Burk, A.A., Rowland, L.B. phys stat sol (b), 202 (1997) p. 263 10.1002/1521-3951(199707)202:1<263::AID-PSSB263>3.0.CO;2-Y3.0.CO;2-Y>CrossRef3.0.CO;2-Y>Google Scholar
23. Kordina, O., Henry, A., Janzén, E., Carter, C.H., Material Science Forum, 264–268 (1998) p. 97 10.4028/www.scientific.net/MSF.264-268.97CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Epitaxial Growth of SiC in a Vertical Multi-Wafer CVD System: Already Suited as Production Process?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Epitaxial Growth of SiC in a Vertical Multi-Wafer CVD System: Already Suited as Production Process?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Epitaxial Growth of SiC in a Vertical Multi-Wafer CVD System: Already Suited as Production Process?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *