Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T08:31:02.142Z Has data issue: false hasContentIssue false

Epitaxial Aluminum Electrodes on Theta Rotated Y-X LiTaO3 Piezoelectric Substrate for High Power Durable SAW Duplexers.

Published online by Cambridge University Press:  01 February 2011

Osamu Nakagawara
Affiliation:
Murata Manufacturing Co., Ltd., 1–10–1 Higashikoutari, Nagaokakyo-shi, Kyoto 617–8555, Japan
Hironori Suzuki
Affiliation:
Murata Manufacturing Co., Ltd., 1–10–1 Higashikoutari, Nagaokakyo-shi, Kyoto 617–8555, Japan
Shuji Yamato
Affiliation:
Murata Manufacturing Co., Ltd., 1–10–1 Higashikoutari, Nagaokakyo-shi, Kyoto 617–8555, Japan
Masayuki Hasegawa
Affiliation:
Murata Manufacturing Co., Ltd., 1–10–1 Higashikoutari, Nagaokakyo-shi, Kyoto 617–8555, Japan
Hideharu Ieki
Affiliation:
Murata Manufacturing Co., Ltd., 1–10–1 Higashikoutari, Nagaokakyo-shi, Kyoto 617–8555, Japan
Get access

Abstract

High power durable electrodes have been successfully grown on 38.5° rotated Y-X LiTaO3 piezoelectric substrates featuring epitaxial Al films with a pseudo-homoepitaxial Ti intermediate layer. We found that a two-step process sequence in the deposition temperature of an intermediate layer could make it possible for an Al/Ti structure to grow epitaxially on low-cut-angle Y-X LiTaO3. Specified epitaxial relationship was Al(111)<011>//Ti(001)<100>//LiTaO3(001)<100>. Duplexers with epitaxial Al electrodes had a breakdown power above 6 W and more than ten times longer lifetime in contrast to filters with polycrystalline electrodes of which the breakdown power is 3.4 W. Epitaxial electrodes with extremely less grain boundary can improve power durability because self-diffusion of Al atoms occurs mainly in the grain boundary of the film. Material variation of epitaxial electrodes will be discussed as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Satoh, Y., Nishihara, T., and Ikuta, O.: 1998 IEEE Ultrasonics Symp. Proc. (1998) 17.Google Scholar
2. Latham, J. I., Shreve, W. R., Tolar, N. J., and Ghate, P. B.: Thin Solid Films 64 (1979) 9.Google Scholar
3. Howard, J. K., White, J. F., and Ho, P. S.: J. Appl. Phys. 49 (1978) 4083.Google Scholar
4. Takayama, R., Furukawa, M., Murashima, Y., Sakuragawa, T., Yuda, N., and Nomura, K.: 1998 IEEE Ultrasonic Symp. Proc. (1998) 5.Google Scholar
5. Kimura, N., Nakao, M., and Sato, K.: 1998 Ultrasonics Symp. Proc. (1998) 315.Google Scholar
6. Takayama, R., Nakanishi, H., Sakuragawa, T., Kawasaki, T., and Nomura, K.: 2000 IEEE Ultrasonic Symp. Proc. (2000) 4G–2.Google Scholar
7. Schrieber, H. U. and Grave, B.: Solid State Electron. 24 (1981) 1135.Google Scholar
8. Nakagawara, O., Saeki, M., Tsubaki, N., Taniguchi, N., Ikada, K., Watanabe, M., Inoue, K., Hagi, T., Makino, T., and Arai, S.: 2002 IEEE Ultrasonic Symp. Proc. (2002) 4C–4.Google Scholar
9. Nakagawara, O., Saeki, M., Watanabe, M., Inoue, K., Hagi, T., Makino, T., and Arai, S.: J. Crys. Growth, 249 (2003) 497.Google Scholar
10. Nakagawara, O., Saeki, M., Teramoto, A, Hasegawa, M., and Ieki, H.: 2003 IEEE Ultrasonic Symp. Proc. (2003) P2L2.Google Scholar