Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T21:30:46.433Z Has data issue: false hasContentIssue false

Enlarging the Bandwidth of Nano-scale Propagating Plasmonic Modes in Deep-subwavelength Cylindrical Holes

Published online by Cambridge University Press:  01 February 2011

Peter B. Catrysse
Affiliation:
pcatryss@stanford.edu, Stanford University, Electrical Engineering, E. L. Ginzton Laboratory, Box N-126, 450 Via Palou, Stanford, CA, 94301-4088, United States
Shanhui Fan
Affiliation:
shanhui@stanford.edu, Stanford University, Stanford, CA, 94305-4088, United States
Get access

Abstract

Subwavelength cylindrical holes in optically thick metallic films always support a propagating HE11 mode near the surface plasmon frequency, regardless of how small the holes are. For holes filled with a uniform dielectric material, the bandwidth of the HE11 mode asymptotically approaches zero as the hole size is reduced to deep-subwavelength scales. We show that it is possible to create nano-scale propagating plasmonic modes with very large bandwidth in holes that are concentrically filled with two different dielectric materials, even when the hole radius goes to zero.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] S. Blair and Nahata, A., “Focus issue: Extraordinary light transmission through sub-wavelength structured surfaces - Introduction,” Optics Express 12(16), 3618–3618 (2004).Google Scholar
[2] Genet, C. and Ebbesen, T. W., “Light in tiny holes,” Nature 445(7123), 3946 (2007).Google Scholar
[3] Baida, F. I. and Labeke, D. Van, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Physical Review B 67(15), 155314 (2003).Google Scholar
[4] Porto, J. A., Garcia-Vidal, F. J., and Pendry, J. B., “Transmission resonances on metallic gratings with very narrow slits,” Physical Review Letters 83(14), 28452848 (1999).Google Scholar
[5] Astilean, S., Lalanne, P., and Palamaru, M., “Light transmission through metallic channels much smaller than the wavelength,” Optics Communications 175(4), 265273 (2000).Google Scholar
[6] Cao, Q. and Lalanne, P., “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Physical Review Letters 88(5), 057403 (2002).Google Scholar
[7] Lalanne, P., Hogonin, J. P., Astilean, S., Palamaru, M., and Moller, K. D., “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” Journal of Optics A: Pure Applied Optics 2, 4851 (2000).Google Scholar
[8] Popov, E., Neviere, M., Enoch, S., and Reinisch, R., “Theory of light transmission through subwavelength periodic hole arrays,” Physical Review B 62(23), 1610016108 (2000).Google Scholar
[9] Takakura, Y., “Optical resonance in a narrow slit in a thick metallic screen,” Physical Review Letters 86(24), 56015603 (2001).Google Scholar
[10] Barnes, W. L., Dereux, A., and Ebbesen, T. W., “Surface plasmon subwavelength optics,” Nature 424(6950), 824830 (2003).Google Scholar
[11] Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E., and Ebbesen, T. W., “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film.,” Physical Review Letters 92(10), 107401 (2004).Google Scholar
[12] Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., and Wolff, P. A., “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667669 (1998).Google Scholar
[13] Krishnan, A., Thio, T., Kima, T. J., Lezec, H. J., Ebbesen, T. W., Wolff, P. A., Pendry, J., Martin-Moreno, L., and Garcia-Vidal, F. J., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Optics Communications 200(1), 17 (2001).Google Scholar
[14] Lezec, H. J. and Thio, T., “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Optics Express 12(16), 36293651 (2004).Google Scholar
[15] Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Pellerin, K. M., Thio, T., Pendry, J. B., and Ebbesen, T. W., “Theory of extraordinary optical transmission through subwavelength hole arrays,” Physical Review Letters 86(6), 11141117 (2001).Google Scholar
[16] Pendry, J. B., Martin-Moreno, L., and Garcia-Vidal, F. J., “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847848 (2004).Google Scholar
[17] Degiron, A. and Ebbesen, T. W., “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” Journal of Optics a-Pure and Applied Optics 7(2), S90–S96 (2005).Google Scholar
[18] Huang, C., Wang, Q., and Zhu, Y., “Dual effect of surface plasmons in light transmission through perforated metal films,” Physical Review B 75(24), 245421 (2007).Google Scholar
[19] Koerkamp, K. J. K., Enoch, S., Segerink, F. B., Hulst, N. F. van, and Kuipers, L., “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Physical Review Letters 92(18), 183901 (2004).Google Scholar
[20] Ruan, Z. C. and Qiu, M., “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Physical Review Letters 96(23), 233901 (2006).Google Scholar
[21] Molen, K. L. van der, Koerkamp, K. J. Klein, Enoch, S., Segerink, F. B., Hulst, N. F. van, and Kuipers, L., “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Physical Review B 72(4), 183901 (2005).Google Scholar
[22] Shin, H., Catrysse, P. B., and Fan, S., “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Physical Review B 72(8), 085436 (2005).Google Scholar
[23] Novotny, L. and Hafner, C., “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function.,” Physical Review E 50(5), 40944106 (1994).Google Scholar
[24] Ibanescu, M., Fink, Y., Fan, S., Thomas, E. L., and J. Joannopoulos, D., “An all-dielectric coaxial waveguide,” Science 289(5478), 415419 (2000).Google Scholar
[25] Yeh, P., Yariv, A., and Marom, E., “Theory of Bragg fiber.,” Journal of the Optical Society of America 68(9), 11961201 (1978).Google Scholar