Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-gf4tf Total loading time: 0.255 Render date: 2021-08-06T04:26:27.093Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Enhanced Second Order Nonlinear Optical Susceptibilities in Ionically Self-Assembled Films Incorporating Dianionic Molecules

Published online by Cambridge University Press:  21 March 2011

P.J. Neyman
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061
M.T. Guzy
Affiliation:
Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061
S. Shah
Affiliation:
Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061
K.E. Van Cott
Affiliation:
Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061
R.M. Davis
Affiliation:
Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061
H. Wang
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061
H.W. Gibson
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061
C. Brands
Affiliation:
Department of Physics, Virginia Tech, Blacksburg, VA 24061
J.R. Heflin
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 Department of Physics, Virginia Tech, Blacksburg, VA 24061
Get access

Abstract

Ionically self-assembled monolayer (ISAM) films have been recently shown to spontaneously produce noncentrosymmetric ordering that gives rise to a substantial second order nonlinear optical (NLO) response. Typically, the ISAM films for NLO response are an assemblage of bilayers of oppositely charged polymers whose thickness can be controlled through variation of pH and ionic strength of the immersion solutions. Here, we study the effects of replacing the NLO-active polymer layers with layers of dianionic molecules. Films fabricated exclusively using polyelectrolytes contain some fraction of both randomly oriented and anti-parallel oriented chromophores. The incorporation of dianionic molecules within the ISAM films affords greater χ(2) due to increased net polar orientation of the chromophores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Decher, G., Hong, J.D., and Schmitt, J., Thin Solid Films 210, 831 (1992).CrossRefGoogle Scholar
2. Decher, G., Science 277, 1232 (1997).CrossRefGoogle Scholar
3. Heflin, J.R., Figura, C., Marciu, D., Liu, Y., and Claus, R.O., SPIE Proc. 3147, 10 (1997); Appl. Phys. Lett. 74, 495 (1999).CrossRefGoogle Scholar
4. Lvov, Y., Yamada, S., and Kunitake, T., Thin Solid Films 300, 107 (1997).CrossRefGoogle Scholar
5. Wang, X., Balasubramanian, S., Li, L., Jiang, X., Sandman, D., Rubner, M.F., Kumar, J., and Tripathy, S.K., Macromol. Rapid Commun. 18, 451 (1997).CrossRefGoogle Scholar
6. Lenahan, K.M., Wang, Y., Liu, Y., Claus, R.O., Heflin, J.R., Marciu, D., and Figura, C., Adv. Mater. 10, 853 (1998).3.0.CO;2-P>CrossRefGoogle Scholar
7. Roberts, M.J., Lindsay, G.A., Herman, W.N., and Wynne, K.J., J. Am. Chem. Soc. 120, 11202 (1998).CrossRefGoogle Scholar
8. Figura, C., Neyman, P.J., Marciu, D., Brands, C., Murray, M.A., Hair, S., Miller, M.B., Davis, R.M., and Heflin, J.R.. MRS Proc. Vol. 598, BB4.9.16 (2000).Google Scholar
9. Figura, C., Neyman, P.J., Marciu, D., Brands, C., Murray, M.A., Hair, S., Davis, R.M., Miller, M.B., and Heflin, J.R., SPIE Proc. Vol. 3939, 214222 (2000).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhanced Second Order Nonlinear Optical Susceptibilities in Ionically Self-Assembled Films Incorporating Dianionic Molecules
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Enhanced Second Order Nonlinear Optical Susceptibilities in Ionically Self-Assembled Films Incorporating Dianionic Molecules
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Enhanced Second Order Nonlinear Optical Susceptibilities in Ionically Self-Assembled Films Incorporating Dianionic Molecules
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *