Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-54nbv Total loading time: 0.272 Render date: 2021-07-24T09:15:45.865Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Enhanced contrast ratio of an electrochromic window (ECW) based on a V2O5-TiO2 composite thin film as a counter electrode

Published online by Cambridge University Press:  01 February 2011

Sooyeun Kim
Affiliation:
sooyeunk@u.washington.edu, university of washington, Materials Science & Engineering, University of Washington, Fluke Hall 115E, seattle, WA, 98195, United States, 206-616-4088, 206-616-4088
Chunye Xu
Affiliation:
chunye@u.washington.edu, University of Washington, Mechanical Engineering, Seattle, WA, 98115, United States
Minoru Taya
Affiliation:
tayam@u.washington.edu, University of Washington, Mechanical Engineering, Seattle, WA, 98115, United States
Get access

Abstract

An Electrochromic window (ECW) is a strong candidate for an optical shutter. An ECW is composed of the conductive polymer as a working electrode and V2O5 as a counter electrode. The ECW technology switches between colored and bleached stages. In this paper the modification of a V2O5 thin film as a counter electrode is studied to increase contrast ratio of ECWs by adding TiO2 into V2O5. The dependence of the intercalation properties and transmissivity of V2O5-TiO2 composite films on various chemical compositions, a preparation and characterization of the films for use as a transparent ion storage layer in organic ECWs are focused on in this paper. A V2O5-TiO2 composite film was synthesized with sol-gel electrophoresis deposition method. Indium Tin Oxide (ITO) coated glass was used as an electrically conductive and transparent substrate. A V2O5-TiO2 composite film with V/Ti ratio of 70/30 in the reduced state showed 6 to 13% improvement of transmissivity between 380 nm and 800 nm wavelengths as compared to a V2O5 thin film in the same state. Li+ intercalation rate was also observed to be higher. The composite film exhibited twice of capacitance than that of the V2O5 film. An ECW with the composite film exhibited 6% higher contrast ratio than that with the V2O5 film. The contrast ratio of the ECW, measured as Δ%T, was equal to 56%, and ranged from 2% to 58% between the colored and bleached state measured at 580 nm wavelength. The color change response speed was also faster, i.e., only two seconds between fully colored and bleached stages.

Key words: electrochromic window (ECW), V2O5-TiO2 composite film, contrast ratio, transmissivity, Li+ intercalation rate

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Xu, C, Lui, L, Legenski, S, Le Guilly, M, Taya, M, Weidner, A, “Enhanced Smart Window Based on Electrochromic (EC) Polymers.Smart Structures and Materials, Proc. SPIE 5051, 404411 (2003)Google Scholar
2. Lambert, C.M., Sol. Energy Mater. Sol. Cells. 76, 489499 (2003).CrossRefGoogle Scholar
3. Chen, W., kaneko, Y., Kinomura, N., “Preparation and Electrochromic Properties of V-Nb mixed-Oxide Films by Evaporation.” Journal of Applied Electrochemistry, 33, 515 (2003).CrossRefGoogle Scholar
4. Lee, Kyoungho, Cao, Guozhong, “Enhancement of Intercalation Properties of V2O5 Film by TiO2 Addition.J. Phys. Chem. B, 109, 1188011885 (2005).CrossRefGoogle ScholarPubMed
5. Fontenot, C. J, Wiench, J. W, Pruski, M, Schrader, G. L, J. Phys. Chem. B, 104, 11622 (2000).CrossRefGoogle Scholar
6. Steven, J, Limmer, Seana, Wu, Yun, Chou, Tammy P., Nguyen, Carolyn, Cao, Guozhong, Adv. Funct. Mater. 12, 5964 (2002).Google Scholar
7. Xu, Chunye, Liu, Lu, Legenski, Susan E., Ning, Dai, Taya, Minoru, Journal of Materials Research, 19 (7), 20722080 (2004).CrossRefGoogle Scholar
8. Sapp, Shawn A., Sotzing, Gregory A., Reynads, John R., Chem. Mater. 10, 21012108 (1998).CrossRefGoogle Scholar
9. Granqrist, C. G., Handbook of Inorganic Electrochromic Materials, (Elsevier, 1995) pp. 265275.CrossRefGoogle Scholar
10. Ning, Dai, Xu, Chunye, Liu, Lu, Kaneko, Calen, Taya, Minoru, Proc. of SPIE, 5759, 260267 (2005).CrossRefGoogle Scholar
11. Kaneko, Calen, Xu, Chunye, Liu, Lu, Ning, Dai, Taya, Minoru, Proc. of SPIE, 5759, 518524 (2005).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhanced contrast ratio of an electrochromic window (ECW) based on a V2O5-TiO2 composite thin film as a counter electrode
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Enhanced contrast ratio of an electrochromic window (ECW) based on a V2O5-TiO2 composite thin film as a counter electrode
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Enhanced contrast ratio of an electrochromic window (ECW) based on a V2O5-TiO2 composite thin film as a counter electrode
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *