Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-r8t2r Total loading time: 0.258 Render date: 2022-07-02T21:36:07.015Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Electrophoretic Deposition of Barium Strontium Titanate Functionally Graded Thick Film Composites for Electronically Scanning Antennas

Published online by Cambridge University Press:  18 March 2011

Bonnie Gersten
Affiliation:
Weapons and Materials Directorate, U.S. Army Research Laboratory Aberdeen Proving Grounds, MD 21005-5069, U. S. A.
Jennifer Synowczynski
Affiliation:
Weapons and Materials Directorate, U.S. Army Research Laboratory Aberdeen Proving Grounds, MD 21005-5069, U. S. A.
Get access

Abstract

The composition 40 wt% Ba0.55Sr0.45TiO3 (BST) – 60 wt% MgO bulk material was recently found to be a promising candidate as a low loss, tunable material for electronically scanning antennas (ESA). However, due to the high permittivity of the BST-MgO composite impedance mismatch within the antenna could be a source of loss. Electrophoretic deposition (EPD) could be used as a processing tool to develop functionally graded structures tailored to reduce the impedance mismatch without a reduction in the tunability. In addition, EPD could be used in thin or thick films to decrease the required biasing fields. In this study, EPD was used as a method for deposit thick films of BST functionally graded composites. The concentration of the suspension, solvent type, mixed solvent concentrations, bias field, time, particle size of powders and distance between electrodes were studied to control the deposition yield and thickness. SEM or calipers were used to measure deposit thickness. The relative weight ratio of BST to MgO in the suspension was compared to the final structure as measured by EDS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sengupta, L. C., Synowczynski, J., and Ngo, E., J. Integ. Ferro., 15, 181 (1997).CrossRefGoogle Scholar
[2] Synowczynski, J., Sengupta, L. C., Chiu, L., J. Integ. Ferro., 22, 341 (1998).CrossRefGoogle Scholar
[3] Synowczynski, J. and Gersten, B., Army Science Conference Proceedings (2000).Google Scholar
[4] Kingery, W. D., Bowen, H. K., Uhlmann, D. R., Introduction to Ceramics, (John Wiley & Sons, New York, 1976), p. 933 Google Scholar
[5] Sarkar, P., Datta, S. and Nicholson, P. S., Composites Part B, 28B 49 (1997).CrossRefGoogle Scholar
[6] Zhao, C., Vleugels, J., Vandeperre, L., Basu, B., Biest, O. Van der, J. of Mat. Sci. Lett., 17[17], 1453 (1998).CrossRefGoogle Scholar
[7] Sarkar, P. and Nicholson, P. S., J. Am Ceram. Soc., 79 [8] 1987 (1996).CrossRefGoogle Scholar
[8] Hamaker, H. C., Trans. Faraday Soc., 36 279 (1940).CrossRefGoogle Scholar
[9] Avgustinik, A. I., J. Appl. Chem., 35 2090 (1962).Google Scholar
[10] Biesheuvel, P. M. and Verweij, H., J. Am. Ceram. Soc., 82 [6] 1451 (1999).CrossRefGoogle Scholar
[11] Ferrari, B., Moreno, R., Sarkar, P., Nicholson, P. S., J. Europ. Ceram. Soc., 20, 99 (2000).CrossRefGoogle Scholar
[12] Yamashita, K., Nagai, M., and Umegaki, T., J. Mat. Sci., 332, 6661 (1997).CrossRefGoogle Scholar
[13] Lide, D. R., CRC Handbook of Chemistry and Physics, (CRC Press, Cleveland, Ohio, 2000)Google Scholar
[14] Ashland Chemical Solvent Property Chart (1986)Google Scholar
[15] Powers, R.W., Mitoff, S.P., King, R.N., and Bielawski, J.C., Solid State Ionics, 5, 287 (1981).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electrophoretic Deposition of Barium Strontium Titanate Functionally Graded Thick Film Composites for Electronically Scanning Antennas
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electrophoretic Deposition of Barium Strontium Titanate Functionally Graded Thick Film Composites for Electronically Scanning Antennas
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electrophoretic Deposition of Barium Strontium Titanate Functionally Graded Thick Film Composites for Electronically Scanning Antennas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *