Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4k54s Total loading time: 0.253 Render date: 2021-12-01T10:55:46.347Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Electronic States and Magnetic Coupling in Fe/Fe3O4 Junctions

Published online by Cambridge University Press:  01 March 2011

J. Inoue
Affiliation:
Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
T. Kida
Affiliation:
Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
S. Honda
Affiliation:
ORDIST, Kansai University, Suita 564-8680, Japan
H. Itoh
Affiliation:
Department of Pure and Applied Physics, Kansai University, Suita 564-8680, Japan
H. Yanagihara
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
E. Kita
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
K. Mibu
Affiliation:
Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Get access

Abstract

Exchange coupling observed recently in Fe/ Fe3O4 (001) junctions shows comparable intensity to that in Co/Ru/Co trilayers, and has potential applicability to spintronics devices. To clarify the mechanism of the exchange coupling, electronic and magnetic states of Fe/ Fe3O4 junctions are calculated in the first principles method by assuming four junction structures of bcc Fe and Fe3O4 layers. It is shown that the local moments of bcc Fe atoms at the interface increase, but those of Fe ions at the interface of Fe3O4 layer decrease. The total energy of the junctions is plotted as a function of distance between Fe and Fe3O4 layers. Calculated results of the coupling energy between Fe and Fe3O4 layers, however, are larger than experimental ones by two orders of magnitude, and they correspond to inter-atomic exchange interactions at the interface. In order to explain the experimental results, we propose a mechanism of exchange coupling mediated by impurity-like states of interfacial Fe atoms which possess reversed magnetic moments in bcc Fe layer. Frustration effects in exchange coupling between Fe and Fe3O4 layers are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yanase, A. and Shiratoi, K., J. Phys. Soc. Jpn. 53, 312 (1984).CrossRefGoogle Scholar
2. Zhang, Z. and Satpathy, S., Phys. Rev. B 44, 13319 (1991).CrossRefGoogle Scholar
3. Hu, G. and Suzuki, Y., Phys. Rev. Lett. 89, 276601 (2002).CrossRefGoogle Scholar
4. Chapline, M. G. and Wang, S. X., Phys. Rev. B 74, 014418 (2006).CrossRefGoogle Scholar
5. Yanagihara, H., Toyoda, Y., Ohnishi, A., and Kita, E., Appl. Phys. Exp. 1, 111303 (2008).CrossRefGoogle Scholar
6. Yanagihara, H., Toyoda, Y., and Kita, E., J. Appl. Phys. 101, 09D101 (2007).CrossRefGoogle Scholar
7. Bruno, P., Phys. Rev. B 49, 13231 (1994).CrossRefGoogle Scholar
8. Faure-Vincent, J., Tiusan, C., Bellouard, C., Popova, E., Hehn, M., Montaigne, F., and chuhl, A., Phys. Rev. Lett. 89, 107206 (2002).CrossRefGoogle Scholar
9. Szotek, Z., Temmerman, W. M., Ködderitzsch, D., Svane, A., Petit, L., and Winter, H., Phys. Rev. B 74, 174431 (2006).CrossRefGoogle Scholar
10. Margulies, D. T., Parker, F. T., Rudee, M. L., Spada, F. E., Chapman, J. N., Aitchison, P. R., and Berkowitz, A. E., Phys. Rev. Lett. 79, 5162 (1997).CrossRefGoogle Scholar
11. Mibu, K. et al. , unpublished.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electronic States and Magnetic Coupling in Fe/Fe3O4 Junctions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electronic States and Magnetic Coupling in Fe/Fe3O4 Junctions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electronic States and Magnetic Coupling in Fe/Fe3O4 Junctions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *