Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T09:54:18.046Z Has data issue: false hasContentIssue false

Effects of Hyperthermal Carbon Subimplantation Doping on the Raman Spectra of Gaas

Published online by Cambridge University Press:  22 February 2011

P. Fons
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Yunosuke Makita
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Shinji Kimura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Tsutomu Iida
Affiliation:
Meiji University, 1-1-1 Higashi-mita, Tama, Kawasaki 214, Japan
Akimasa Yamada
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Hajime Shibata
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Akira Obara
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Yushin Tsai
Affiliation:
Meiji University, 1-1-1 Higashi-mita, Tama, Kawasaki 214, Japan
Shin-Ichiro Uekusa
Affiliation:
Meiji University, 1-1-1 Higashi-mita, Tama, Kawasaki 214, Japan
Get access

Abstract

The structural effects of low-energy (30-500 eV), mass separated C12 Ion doping of GaAs simultaneous with conventional solid source MBE growth have been studied using room-temperature raman scattering, Hall-effect, transmission electron microscopy and 2K photoluminesence measurements for GaAs epitaxy temperatures of 550 ºC. Results indicate good acceptor activation without detectable residual damage is achieved for ion energies ≤ 240 eV, while at EIon = 500 eV, residual damage is present with a corresponding reduction in electrical activation. Low-energy TRIM calculations indicate that the damage is related to the increased depth distribution of vacancies and interstitials created during the higher (500 eV) implantation process which can not be annealed out at growth temperatures. Constant energy (100 eV) film growth experiments for a range of implantation currents (45 pA/cm2 - 45 nA/cm2) and growth temperatures of 550 and 550 ºC, show LO Raman peak broadening and mode hardening for currents ≥15 nA while maintaining very high C acceptor activation. This is interpreted as residual stress due to small amounts of interstitial C in the highest doped films. Both Hall mobility measurements and photoluminesence show no evidence of C dopant compensation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Malik, R.J., Nottenberg, Rn.N., Schubert, E.F., Walker, J.F., and Ryan, R.W., Appl. Phys. Lett., 53, 2661 (1988).Google Scholar
2 Giannini, C., Fischer, A., Lange, C., Ploog, K., and Taphfer, L., Appl. Phys. Lett., 61, 183 (1992).Google Scholar
3 Abernathy, R., Pearton, S.J., Ren, F., Hobson, W.S., Fullowan, T.R., Katz, A., Jordan, A.S., and Kovalchick, J., J. Cryst. Growth, 105, 375 (1990).Google Scholar
4 Kuech, J.K., Tischler, M.A., Wang, P.-J., Schilla, G., Potemski, R., and Cardone, F., Appl. Phys. Lett., 53, 1317 (1988).Google Scholar
5 Amarger, V., -Chevallier, C.D., Gao, Y., and Descouts, B., J. Appl. Phys., 71, 5694 (1992).Google Scholar
6 van Berlo, W.H., J. Appl. Phys., 73, 2765 (1993).Google Scholar
7 Iida, Tsutomu, Makita, Yunosuke, Kimura, Shinji, Winter, Stefan, Yamada, Akimasa, Shibata, Hajime, Obara, Akira, Niki, Shigeru, Fons, Paul, Tsai, Yushin, and Shin-ichiro, Uekusa, , Appl. Phys. Lett., 63, 1951 (1993).Google Scholar
8 Moll, A.J., Man Yu, Kin, Walukiewicz, W., Hansen, W.L, Haller, E.E., Appl. Phys. Lett., 60, 2383 (1992).Google Scholar
9 Mader, A., Meyer, J.D., Thee, P., and Bethge, K., Nuc. Inst. & Methods in Phys. Res. B, 50, 35 (1990).Google Scholar
10 Höfler, G.E., and Hsieh, K.C., Appl. Phys. Lett., 61, 20 (1992).Google Scholar
11 Martin, G.M, Appl. Phys. Lett., 39, 747 (1981).Google Scholar
12 Sze, S.M, The Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981), p. 21)Google Scholar
13 Trommer, R., Ph.D. Thesis, Univ. of Stuttgard, 1977.Google Scholar
14 Tiong, K.K., Amirtharaj, Pm>, Pollak, F.H., and Aspnes, D.E., Appl. Phys. Lett, 44, 122, (1984).,+Pollak,+F.H.,+and+Aspnes,+D.E.,+Appl.+Phys.+Lett,+44,+122,+(1984).>Google Scholar
15 Parayantha, P., and Pollak, F., Phys. Rev. Lett., 52, 1822, (1984).Google Scholar
16 Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, (Permagon, New York, 1985).Google Scholar
17 Vancauwenberghe, O., Herbots, N., and Hellman, O.C., J.Vac. Sci. Technol., B9, 2027 (1991).Google Scholar
18 Kitabatake, M., Fons, P., and Greene, J.E., J. Crys. Growth, 111, 870, (1991).Google Scholar