Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-rzhp5 Total loading time: 0.167 Render date: 2021-07-23T16:21:08.792Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Effects of additives on the phase stability of Nb3Si intermetallic compound and mechanical properties of Nb-Si alloy

Published online by Cambridge University Press:  18 January 2011

Tatsuichi Tanahashi
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Hokkaido, Japan Graduate Student, Graduate School of Engineering, Hokkaido University
Seiji Miura
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
Tetsuo Mohri
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
Get access

Abstract

Recently, Nb-Si alloys have attracted attentions as substitutional materials of Ni-based superalloys because of its low density and high melting point. For attaining good room temperature toughness of Nb-Si alloys, proposed is a microstructure-control technique by combining eutectic reaction (L->Nb+Nb3Si) and eutectoid reaction (Nb3Si->Nb+ Nb5Si3) for spheroidizing Nb5Si3 strengthening phase embedded in Nb matrix [1]. For the solid solution strengthening of Nb matrix phase W and Mo are very effective, but Nb3Si phase disappears by adding these elements of as small as 3 at%. In contrast, Ti and Ta stabilize Nb3Si phase. For a further alloy development, establishment of an alloy design based on the control of phase stability of Nb3Si is needed. In the previous study [2], it was revealed that the phase stability of Nb3Si can be controlled by selecting appropriate Ta/Mo ratio. In the present study, this approach is expanded to other combinations of stabilizing and destabilizing elements of Nb3Si, such as Ti and W, Ta and W, and Ti and Mo. Vickers hardness tests were conducted on the heat-treated samples to reveal effects of additives on mechanical properties of Nb-Si alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Miura, S., Murasato, Y., Sekito, Y., Tsutsumi, Y., Ohkubo, K., Kimura, Y., Mishima, Y. and Mohri, T., Mat. Sci. and Eng. A, Vol. 510-511, 317 (2009).CrossRefGoogle Scholar
[2] Miura, S., Tanahashi, T., Mishima, Y. and Mohri, T., Materials Science Forum Vols. 654-656, 444 (2010).CrossRefGoogle Scholar
[3] Radhakrishnan, R., Bhanduri, S. and Henager, C.H. Jr., JOM 49(1), 41 (1997).CrossRefGoogle Scholar
[4] Jackson, M.R., Bewlay, B.P. and Rowe, R.G., Skelly, D.W., Lipsitt, H.A., JOM 48(1), 39 (1996).CrossRefGoogle Scholar
[5] Bewlay, B.P., Jackson, M.R., Zhao, J.-C., and Subramanian, P.R., Metall. Mater. Trans. A, 34A, 2043 (2003).CrossRefGoogle Scholar
[6] Miura, S., Aoki, M., Saeki, Y., Ohkubo, K., Mishima, Y. and Mohri, T., Metall. Mater. Trans. A, 36, 489 (2005).CrossRefGoogle Scholar
[7] Tan, Y., Tanaka, H., Ma, C.L., Kasama, A., Tanaka, R., Mishima, Y. and Hanada, S., J. Japan Inst. Metals, Vol. 64, 559 (2000).CrossRefGoogle Scholar
[8] Ma, C.L., Li, J.G., Tan, Y., Tanaka, R. and Hanada, S., Mat. Sci. and Eng. A 386, 375 (2004).CrossRefGoogle Scholar
[9] Sekido, N., Miura, S. and Mishima, Y., “The Third Pacific Rim International Conf. on Advanced Materials and Processing (PRICM 3)” Proceedings, Imam, M. A. et al. , eds.,TMS, Warrendale, PA, 2393 (1998).Google Scholar
[10] Miura, S., Saeki, Y. and Mohri, T., Mat. Res. Soc. Proc. Vol. 552, KK6.9.1 (1999).Google Scholar
[11] Schaeffler, A.L., Met. Prog, 56, 680 (1949).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of additives on the phase stability of Nb3Si intermetallic compound and mechanical properties of Nb-Si alloy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of additives on the phase stability of Nb3Si intermetallic compound and mechanical properties of Nb-Si alloy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of additives on the phase stability of Nb3Si intermetallic compound and mechanical properties of Nb-Si alloy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *