Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-b6fb2 Total loading time: 0.18 Render date: 2021-09-25T07:33:14.527Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Effect of Vanadium Ions on the Functional Properties of Nanocrystalline Zinc Oxide

Published online by Cambridge University Press:  07 July 2011

Marco A. Gálvez Saldaña
Affiliation:
Department of Physics, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico 00980, USA.
Oscar Perales Perez
Affiliation:
Department of Engineering Science and Materials, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico 00680-9044, USA.
Maxime J-F Guinel
Affiliation:
Department of Physics, University of Puerto Rico at Rio Piedras, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 USA.
Get access

Abstract

A systematic study was carried out to determine the effects of composition and grain size on the structural, optical and magnetic properties of pure ZnO and vanadium-doped ZnO nanocrystalline powders and films in the 0.0 at.% V - 6 at.% V range. The powders and films were synthesized via a sol-gel approach, where ethanolamine was used to increase the viscosity of the precursor solutions and promote the adhesion of the films onto quartz substrates. Powder X-ray diffraction confirmed the formation of ZnO (host oxide) after annealing of the precursors in air. The average grain size in the thin films ranged from 11 nm to 23 nm when the samples were annealed in air for one hour between 450ºC and 550ºC. UV-vis and photoluminescence confirmed the formation of the host oxide. Also, the photoluminescence intensity was found to be strongly dependent on the amount vanadium. Furthermore, it was found that the vanadium concentration and the annealing temperature play an important role in the ferromagnetic behavior of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pearton, S.J., Heo, W. H., et al. , Semicond. Sci. Technol, 19 (2004), R59R74.CrossRefGoogle Scholar
[2] Kuzma, M., et al. , Journal of Physics: Conference Series 213 (2010) 012035.Google Scholar
[3] Zutic, Igor, et al. , Reviews of Modern Physics, 76, (2004) 323410.CrossRefGoogle Scholar
[4] Özgür, Ü., et al. , Journal of Applied Physics, 98, (2005), 041301.CrossRefGoogle Scholar
[5] Barnes, T.M., et al. , J. Cryst. Growth, 274 (2005), 412417.CrossRefGoogle Scholar
[6] Kang, D.J., et al. , Thin Solid Films 475 (2005) 160165.CrossRefGoogle Scholar
[7] Hyun Kim, J., et al. , Journal Applied Physics, 92, (2002), 10.Google Scholar
[8] Petersen, J., Microelectronics Journal 40 (2009) 239241.CrossRefGoogle Scholar
[9] Karamat, S., Rawat, R.S., et al. , Applied Surface Science 256 (2010) 23092314.CrossRefGoogle Scholar
[10] Cullity, B. D, Element of X-ray Diffractions, Addison Wesley, Reading, MA, 1972, 102.Google Scholar
[11] Wang, Liwei, Meng, Lijian, et al. , Thin Solid Films 517 (2009) 37213725.CrossRefGoogle Scholar
[12] Burstein, E., Phys. Rev. 25 (1982) 7826.Google Scholar
[13] Lu, J.J., Lu, Y.M., Tasi, S.I., et al. Optical Materials 29 (2007) 15481552.CrossRefGoogle Scholar
[14] Shionoya, S. and Yen, W.M., Phosphor Handbook, CRC Press, Boca Raton, Florida 1999.Google Scholar
[15] Gossard, A. C., et al. , Physical Review B, 9, (1974), 4.Google Scholar
[16] Gossard, A. C., et al. , Physical Review B, 10, (1974), 10.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Vanadium Ions on the Functional Properties of Nanocrystalline Zinc Oxide
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Vanadium Ions on the Functional Properties of Nanocrystalline Zinc Oxide
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Vanadium Ions on the Functional Properties of Nanocrystalline Zinc Oxide
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *