Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T01:07:24.330Z Has data issue: false hasContentIssue false

Effect of Thermal Annealing on the Photoluminescence Properties of a GaInNAs/GaAs Single Quantum Well

Published online by Cambridge University Press:  17 March 2011

Laurent Grenouillet
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA Lyon, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
Catherine Bru-Chevallier
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA Lyon, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
Gérard Guillot
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA Lyon, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
Philippe Gilet
Affiliation:
LETI/CEA-G – DOPT, 17 avenue des Martyrs, 38054 Grenoble Cedex 9, France
Philippe Ballet
Affiliation:
LETI/CEA-G – DOPT, 17 avenue des Martyrs, 38054 Grenoble Cedex 9, France
Philippe Duvaut
Affiliation:
LETI/CEA-G – DOPT, 17 avenue des Martyrs, 38054 Grenoble Cedex 9, France
Andrè Chenevas-Paule
Affiliation:
LETI/CEA-G – DOPT, 17 avenue des Martyrs, 38054 Grenoble Cedex 9, France
Alain Million
Affiliation:
LETI/CEA-G – DOPT, 17 avenue des Martyrs, 38054 Grenoble Cedex 9, France
Get access

Abstract

We report on the effect of thermal annealing on the photoluminescence properties of a Ga0.65In0.35N0.02As0.98/GaAs single quantum well. Thermal annealing is shown to decrease the strong nitrogen-induced localization effects observed at low temperatures and to reduce the full width at half maximum of the emission peak. It also induces a strong blue shift of the emission peak energy, which is thought not to arise from an In-Ga interdiffusion alone, as it is much larger than in a nitrogen-free reference single quantum well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choquette, K. D., Klem, J. F., Fischer, A. J., Blum, O., Allerman, A. A., Fritz, I. J., Kurtz, S. R., Breiland, W. G., Sieg, R., Geib, K. M., Scott, J. W., and Naone, R. L., Electron. Lett. 36, 1388 (2000).Google Scholar
2. Grenouillet, L., Bru-Chevallier, C., Guillot, G., Gilet, P., Duvaut, P., Vannuffel, C., Million, A., and Chenevas-Paule, A., Appl. Phys. Lett. 76, 2241 (2000).Google Scholar
3. Gilet, P., Chenevas-Paule, A., Duvaut, P., Grenouillet, L., Holliger, P., Million, A., Rolland, G., and Vannuffel, C., Phys. Status Solidi A 176, 279 (1999).Google Scholar
4. Street, R. A., Searle, T. M., and Augustin, I. G., in Amorphous and Liquid Semiconductors, edited by Stuke, J. and Brenig, W. (Taylor and Francis, London, 1974), p. 953.Google Scholar
5. Gillin, W. P., J. Appl. Phys. 85, 790 (2000).Google Scholar
6. Xin, H. P., Kanavagh, K. L., Kondow, M., and Tu, C. W., J. Cryst. Growth, 201/202, 419 (1999).Google Scholar
7. Li, L. H., Pan, Z., Zhang, W., Lin, Y. W., Zhou, Z. Q., and Wu, R. H., J. Appl. Phys. 87, 245 (2000).Google Scholar
8. Buyanova, I. A., Pozina, G., Hai, P. N., Thinh, N. Q., Bergman, J. P., Chen, W. M., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 77, 2325 (2000).Google Scholar