Hostname: page-component-594f858ff7-7tp2g Total loading time: 0 Render date: 2023-06-06T13:23:15.826Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Effect of Substrate Temperature on Hardness and Transparency of SiOC(–H) Thin Films Synthesized by Atmospheric Pressure Plasma Enhanced CVD Method

Published online by Cambridge University Press:  29 July 2011

Mayui Noborisaka
Affiliation:
Center for Science of Environment, Resources and Energy, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
So Nagashima
Affiliation:
Center for Science of Environment, Resources and Energy, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Hidetaka Hayashi
Affiliation:
Research and Development Center, Toyota industries Co., Japan, 8, Chaya, Kyowa-cho, Obu-shi, Aichi 474-8601, Japan
Naoharu Ueda
Affiliation:
Research and Development Center, Toyota industries Co., Japan, 8, Chaya, Kyowa-cho, Obu-shi, Aichi 474-8601, Japan
Kyoko Kumagai
Affiliation:
Research and Development Center, Toyota industries Co., Japan, 8, Chaya, Kyowa-cho, Obu-shi, Aichi 474-8601, Japan
Akira Shirakura
Affiliation:
Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
Tetsuya Suzuki
Affiliation:
Center for Science of Environment, Resources and Energy, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Get access

Abstract

Silicon-based films have gained much interest as protective coatings for transparent polymeric materials. In this study, SiOC(–H) thin films were deposited on polycarbonate (PC) or Si substrates from trimethylsilane (TrMS) gas diluted with He gas by atmospheric pressure plasma enhanced CVD (AP-PECVD) method with varying substrate temperature, and transparency and hardness of the films were investigated. The films exhibited a good optical transparency with an optical transmittance of about 90% irrespective of the substrate temperature, and the hardness increased from 0.6 to 1.3 GPa as the substrate temperature increased from 60 to 140°C. The results are discussed in terms of chemical structural changes in the films according to the substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ho, J.-J., Chen, C.-Y., Huang, C.-M., Lee, W.J., Liou, W.-R., and Chang, C.-C., Appl. Opt. 44, 6176 (2005).10.1364/AO.44.006176CrossRefGoogle Scholar
2. Charitidis, C., Laskarakis, A., Kassavetis, S., Gravalidis, C., and Logothetidis, S., Superlattices Microstruct. 36, 171 (2004).10.1016/j.spmi.2004.08.015CrossRefGoogle Scholar
3. Kirwan, K. and Smith, G., Plast. Rubbers Compos. 33, 452 (2004).10.1179/174328904X48497CrossRefGoogle Scholar
4. Nojima, Y., Okoshi, M., Nojiri, H., and Inoue, N., Jpn. J. Appl. Phys. 49, 072703 (2010).10.1143/JJAP.49.072703CrossRefGoogle Scholar
5. Anma, H., Yoshimoto, Y., Warashina, M., and Hatanaka, Y., Appl. Sur. Sci. 175, 484 (2001).10.1016/S0169-4332(01)00127-1CrossRefGoogle Scholar
6. Rats, D., Hajek, V., and Martinu, L., Thin Solid Films 340, 33 (1999).10.1016/S0040-6090(98)01338-8CrossRefGoogle Scholar
7. Damasceno, J.C., Camargo, S.S. Jr., and Cremona, M., Thin Solid Films 433, 199 (2003).10.1016/S0040-6090(03)00313-4CrossRefGoogle Scholar
8. Kanazawa, S., Kogoma, M., Moriwaki, T., and Okazaki, S., J. Phys. D. Appl. Phys. 21, 838 (1988).10.1088/0022-3727/21/5/028CrossRefGoogle Scholar
9. Yokoyama, T., Kogoma, M., Kanazawa, S., Moriwaki, T., and Okazaki, S., J. Phys. D. Appl. Phys. 23, 374 (1990).10.1088/0022-3727/23/3/021CrossRefGoogle Scholar
10. Yokoyama, T., Kogoma, M., Moriwaki, T., and Okazaki, S., J. Phys. D. Appl. Phys. 23, 1125 (1990).10.1088/0022-3727/23/8/021CrossRefGoogle Scholar
11. Suzuki, T. and Kodama, H., Diamond and Related Materials 18, 990 (2009).10.1016/j.diamond.2008.11.022CrossRefGoogle Scholar
12. Sakata, T., Kodama, H., Hayashi, H., Shimo, T., and Suzuki, T., Surf. Coat. Technol. 183, 295 (2004).Google Scholar
13. Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 6, 1564 (1992).10.1557/JMR.1992.1564CrossRefGoogle Scholar
14. Rie, K.-T., Gebauer, A., and Whole, J., Surf. Coat. Technol. 7475, 362 (1995).10.1016/0257-8972(95)08215-8CrossRefGoogle Scholar
15. Grill, A. and Neumayer, D.A., J. Appl. Phys. 94, 6697 (2003).10.1063/1.1618358CrossRefGoogle Scholar
16. Loboda, M.J., Grove, C.M., and Schneider, R.F., J. Electrochem. Soc. 145, 2861 (1998).10.1149/1.1838726CrossRefGoogle Scholar
17. Albrecht, M.G. and Blanchette, C., J. Electrochem. Soc. 145, 4019 (1998).10.1149/1.1838907CrossRefGoogle Scholar
18. Kim, Y.-H., Hwang, M.S., Kim, H.J., Kim, J.Y., and Lee, Y., J. Appl. Phys. 90, 3367 (2001).10.1063/1.1402152CrossRefGoogle Scholar
19. Pryce Lewis, H.G., Casserly, T.B., and Gleason, K.K., J. Electrochem. Soc. 148, F212 (2001).10.1149/1.1415723CrossRefGoogle Scholar